
ROYAL INSTITUTE OF TECHNOLOGY
Telecommunication Systems Laboratory (TSLab)

AALTO SCHOOL OF SCIENCE AND TECHNOLOGY
Telecommunications Software and Multimedia Laboratory (TML)

Jaime Antonio Jiménez Bolonio

Adapting a DHT (Distributed Hash
Table) to a Self-Reliant M2M (Machine-
to-Machine) Network

Master’s thesis
Helsinki, July 25, 2011

Supervisors:
Prof. Antti Ylä-Jääski
Aalto School of Science and Technology, Finland
Prof. Markus Hidell
Kungliga Tekniska Högskolan (KTH), Sweden

Instructor:
D.Sc. (Tech.) Jani Hautakorpi
Ericsson Research NomadicLab, Finland

i

KTH - AALTO ABSTRACT OF THE
UNIVERSITIES MASTER’S THESIS

Author: Jaime Antonio Jiménez Bolonio

Name of the thesis: Anpassande av ett DHT (Distributed Hash Table) till
ett självständigt M2M (Machine-to-Machine) nätverk.

Date: July 25, 2011 Number of pages: 79
Faculty: Faculty of Information and Natural Sciences
Supervisors: Antti Ylä-Jääski

Markus Hidell
Instructor: Jani Hautakorpi

"Machine-to-machine" (M2M) kommunikation är ett forsknings område som
förväntas växa inom de närmaste åren. Inom det uppstår nya affärsmöjligheter
som är något som t.ex. Ericssons "Future Internet" projekt fokuserar på. Detta
innebär att man måste definiera nya protokoll och arkitekturer för att stöda dessa
M2M scenarier.

P2P nätverk, och speciellt DHT baserade sådana, är en teknologi som kombin-
erat med M2M kan resultera i nya sätt att lösa problem inom M2M och dess
användningsområde. Detta gäller speciellt inom nät bestående av trådlösa sen-
sorer, Wireless Sensor Networks (WSN). M2M scenarier där sensorerna är mera
autonoma och oberoende av centraliserad kontroll kan dra nytta av DHTn.

Det här examens arbetet fokuserar på sätt att använda sig av dagens DHT pro-
cedurer inom M2M. Dessutom kommer arbetet att presentera ett sätt att imple-
mentera ett M2M kommunikations lager som fungerar över ett existerande DHT.
De senaste sensor och P2P teknologierna kommer också att presenteras och anal-
yseras. På basen av detta kommer vi att ge en förklaring för varför ett sådant
M2M kommunikations lager behövs och vilka fÃűrdelar det för med sig. På basen
av den presenterade lösningen implementeras en fungerande prototyp och några
use case definieras.

Till slut presenteras slutsatserna av arbetet och möjliga framtida forskningsmöj-
ligheter och riktningar inom projektet lyfts fram.

Keywords: CoAP, DHT, IoT, M2M, P2P, RELOAD, Zigbee.

ii

KTH - AALTO ABSTRACT OF THE
UNIVERSITIES MASTER’S THESIS

Author: Jaime Antonio Jiménez Bolonio

Name of the thesis: Adapting a DHT (Distributed Hash Table) to a
Self-Reliant M2M (Machine-to-Machine) Network

Date: July 25, 2011 Number of pages: 79
Faculty: Faculty of Information and Natural Sciences
Supervisors: Antti Ylä-Jääski

Markus Hidell
Instructor: Jani Hautakorpi

Machine-to-machine (M2M) communications is a field of research expected to
grow in the following years. New business opportunities arise in this area, for
instance the 50 Billion Project and the Future Internet Project at Ericsson. Thus
new protocols and architectures need to be defined for the different scenarios
where this technology is applicable.

At the same time well known structured P2P networks, for instance by means of a
Distributed Hash Table (DHT), present great synergy possibilities with M2M, in
particular in the Wireless Sensor Networks (WSN) Area. M2M scenarios in which
sensors become more autonomous and self-reliant, independent from a centralized
decision-making entity can benefit from the use of DHTs.

This thesis aims at adapting current DHT (Distributed Hash Table) procedures
to a M2M (Machine-to-Machine) environment. Moreover it will consist on imple-
menting a layer for M2M communication on top of an existing DHT. We analyze
the state of the art in both sensor and P2P technologies. Based on that, we
explain the motivations to create such a layer and the its benefits. Following the
design we implement a fully working prototype and prepare some use case sce-
narios. Finally, we draw conclusions from the experience and trace future paths
of research for our project.

Keywords: CoAP, DHT, IoT, M2M, P2P, RELOAD, Zigbee.

iii

Acknowledgments

This thesis was conducted at NomadicLab in Ericsson LMF Finland, where I
have been working the last couple of years.

I would like to express my gratitude to my supervisors Antti Ylä-Jääski and
Markus Hidell for their suggestions and support during the thesis. I would
also like to thank my instructor Jani Hautakorpi for his guidance at all stages
of my thesis work.

Special thanks to my colleagues at NomadicLab; Daoyuan Li and Nalin Gupta
for their friendship, expertise and teamwork during this months and our stud-
ies. Thanks too to my manager at LMF Jouni Mäenpää for his continuous
work and involvement in the project.

Needless to say, this thesis would not have been possible without the uncon-
ditional support of my loved ones.

Helsinki, July 25, 2011

iv

Contents

Abbreviations and Acronyms ix

List of Figures xi

1 Introduction 1

1.1 Overview . 1

1.2 Problem Statement . 2

1.3 Structure of the Thesis . 3

2 Background 5

2.1 The Internet of Things . 5

2.1.1 Machine-to-Machine 7

2.2 Current Sensor Technologies 8

2.2.1 IEEE 802.15.4 . 8

2.2.2 ZigBeeTM . 10

2.2.3 6LoWPAN . 12

2.2.4 CoAP . 13

2.3 SNMP . 14

2.4 Peer-to-Peer (P2P) . 16

2.4.1 Unstructured P2P . 18

2.4.2 Structured P2P . 19

2.4.3 Distributed Hash Tables (DHT) 20

2.4.4 RELOAD . 23

v

3 Design 26

3.1 Motivation . 28

3.2 Design Principles . 29

3.3 Architecture . 30

3.4 Design Details . 31

3.4.1 CoAP communication 31

3.4.2 Joining of PN and LN 32

3.4.3 Leaving of PN and LN 36

3.4.4 CoAP Name Registration Service 37

3.4.5 Bookkeeping . 37

3.4.6 Security . 39

3.4.7 Benefits of the Architecture 44

3.5 Use Cases . 45

3.5.1 Dynamic Traffic Signaling 45

3.5.2 Water System Automation 46

4 Implementation 49

4.1 Hardware and Software . 49

4.1.1 Local Node (LN) . 49

4.1.2 Wide-Area Node (WN) and Proxy Node (PN) 51

4.2 Prototype Architecture . 54

5 Conclusions and Future Work 57

5.1 Conclusions . 57

5.2 Future Work . 59

vi

Abbreviations and Acronyms

(A-G)
3G Third Generation
6LoWPAN IPv6 over Low power Wireless Personal Area Networks
ACK Acknowledgment
AES Advanced Encryption Standard
AP Admitting Peer
APDU Application layer Protocol Data Unit
API Application Programming Interface
APL Application Layer
APO Application Object
APS Application Support Sub-layer
APSDE Application Support Sub-layer Data service Entity
ASP Address Settlement by Peer-to-Peer
BP Bootstrap Peer
CAN Content Addressable Network
CoAP Constrained Application Protocol
CoRE Constrained RESTful Environments working group
DIEM Devices and Interoperability EcosysteM
DDNS Distributed Domain Name Service
DNS Domain Name Service
DNS-SD Domain Name Service Service Discovery
DTLS Datagram Transport Layer Security
DoS Denial of Service
EPC Electronic Product Code
EEPROM Electrically Erasable ProgrammableRead-Only Memory
DHT Distributed Hash Table
FFD Full-Function Device
GPRS General Packet Radio Service
GSM Global System for Mobile Communications

vii

(H-S)
HR-WPAN High-Rate Wireless Personal Network
HTTP Hypertext Transfer Protocol
ICE Interactive Connectivity Establishment
ICMPv6 Internet Control Message Protocol version 6
ICT Information and Communication Technologies
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
IPv6 Internet Protocol version 6
IPC Inter Process Communication
LN Local Node
LoWPAN Low-power Wireless Personal Network
LR-WPAN Low-Rate Wireless Personal Network
M2M Machine-to-machine
M2MCE Machine-to-machine Communication Enabler
MAC Medium Access Control
MIC Message Integrity Code
MCN Monitoring and Controlling Node
MR-WPAN Medium-Rate Wireless Personal Network
NAT Network Address Translation
NWK Network Layer
OSI Open Systems Interconnection
P2P Peer-to-Peer
P2PP Peer-to-Peer Protocol
P2PSIP Peer-to-Peer Session Initiation Protocol
PHY Physical Layer
PN Proxy Node
PDU Protocol Data Unit
RELOAD REsource LOcation And Discovery
REST Representational State Transfer
RFC Request For Comments
RFD Reduced-Function Device
RFID Radio-Frequency IDentification
RMI Remote Method Invocation
SEP Service Extensible P2P Protocol
SHA Secure Hash Algorithm
SIP Session Initiation Protocol
SNMP Simple Network Management Protocol
SRAMS tatic Random-Access Memory

viii

(T-Z)
TCP Transmission Control Protocol
TEKES Teknologian ja Innovaatioiden Kehittamiskeskus
TLS Transport Layer Security
TURN Traversal Using Relays around NAT
UA User Agent
UDP User Datagram Protocol
URI Universal Resource Identifier
USB Universal Serial Bus
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network
VLS Variable Speed Limit
WAN Wide Area Network
WN Wide Area Node
WSN Wireless Sensor Network
WWAN Wide Wireless Area Network
XPP Extensible Peer Protocol
ZDO ZigBee Device Object

ix

List of Figures

1.1 Example of Traditional Wireless Sensor Network. 2

1.2 Example of Distributed M2M Sensor Network. 3

2.1 Smart objects are at the intersection of current technologies. . 6

2.2 Outline of the ZigBee Stack Architecture. 11

2.3 Outline of the IP and 6LoWPAN protocol stacks. 13

2.4 Some composed network topologies: (1) Centralized/Ring, (2)
Centralized/Centralized, (3) Centralized/Decentralized. 17

2.5 Different types of P2P: (1) Centralized, (2) Pure and (3) Hybrid. 18

2.6 Example of a Chord ring (a), with the finger tables of the con-
nected nodes. Examples of a node joining (b) and leaving (c)
the overlay . 22

2.7 Examples of recursive (a), and iterative routing (b) 23

2.8 Major components of RELOAD. 24

3.1 Architecture of the system . 27

3.2 Sample sequence diagram of an MCN creating an association
with a PN. The MCN first retrieves the temperature, then it
sets an alert in case the temperature rises above a predetermined
threshold. 28

3.3 Architecture of the M2MCE in a WN. 30

3.4 Protocol Stack of the Proxy Node (PN). 31

3.5 PN joining the overlay. 34

3.6 LN joining the WPAN. 35

3.7 Proxy Node and Local Nodes leaving the Overlay in a graceful
(a) and ungraceful (b) fashion. 37

x

3.8 Architecture of the bookkeeping mechanism 39

3.9 Unsecured (1) and secured (2) Zigbee PDU. 40

3.10 Process of generating, sending and parsing a message 42

3.11 Structure of the Node Information List, storing each node’s in-
formation in one resource. 43

3.12 Dynamic traffic monitoring use case. 46

3.13 Water system automation use case. 47

4.1 A Libelium Waspmote . 50

4.2 Overo Earth COM, Pinto-TH and Tobi extension boards . . . 52

4.3 A Proxy Node with 3G USB Modem (1), XBee ZB transceiver
[2], Pinto-TH board with Overo Earth module (3), LiPoly Charger
(4) and batteries (5) . 53

4.4 Prototype Scenario . 54

4.5 Wide Area Node as implemented in our scenario 55

xi

Chapter 1

Introduction

1.1 Overview

This thesis is part of a program to adapt current DHT (Distributed Hash
Table) procedures to a M2M (Machine-to-Machine) environment. The pro-
gram participates in Ericsson’s 50 billion M2M vision [29]. This work was a
part of the Devices and Interoperability EcosysteM (DIEM) program 1 and
is sponsored by the Finnish Funding Agency for Technology and Innovation
(TEKES) 2 as well as other industrial and research partners. The project is
done in collaboration with the ICT Future Internet SHOK program 3 that
aims to: "Bring together the key research resources to develop future Internet
networking technologies and to create new global ICT based business ecosys-
tems."

This project began by evaluating the different use cases that the M2M tech-
nologies will have to face. Although most of the scenarios are related to the
Ericsson 50 billion vision, only the ones more likely to benefit from a dis-
tributed approach were chosen. Then the most suitable hardware was chosen,
following the principles of small size, low power consumption and enabled con-
nectivity. From the functionality perspective, the M2M layer was designed by
first determining the functions needed for all possible types of cases, making
it generic enough to be adaptable to different use cases.

In this chapter we will introduce the problem this thesis tries to solve. We will
also present the general structure of the thesis.

1http://www.diem.fi/programme
2http://www.tekes.fi/en/
3www.futureinternet.fi

1

1.2 Problem Statement

Current Machine-to-Machine networks are often organized in a hierarchical
or mesh topology (see Figure 1.1) communicating with low power consuming
protocols like Zigbee (see Section 2.2.2). In this mesh there is a central coor-
dination gateway that gathers the data from the densely deployed sensors and
analyzes it a posteriori [9]. This kind of network is very well suited for data
aggregation and for data analysis. Sensors can operate and retrieve data dur-
ing long periods of time, weeks, months or even more than a year, due to their
extremely low battery consumption. Some of these sensors operate indefinitely
if they are connected to a, often renewable, power source. These sensors need
human interaction when it comes to actuating over their environment, since
the flow of information usually goes from the sensors to the human but not
vice-versa.

Figure 1.1: Example of Traditional Wireless Sensor Network.

In this thesis a different approach is proposed. This approach implies a differ-
ent network topology (see Figure 1.2) that relies on a Distributed Hash Table
(DHT) (see Section 2.4.3) to organize the nodes. These nodes are not just
sensors but also actuators, they share the information about the environment
where they have been placed with a Wide Wireless Area Network (WWAN)
in order to make independent decisions and actuate over that environment.
Therefore these nodes or proxies are both sensors and actuators. This Peer-
to-Peer (P2P) network (see Section 2.4) of proxies can be complemented by
other traditional Wireless Sensor Networks (WSN) that will feed data to the
nodes of the DHT. Note that the Proxy Nodes (PN) and Wide Area Nodes
(WN) can act as sensor, actuator or both.

Providing that a suitable DHT is found, there is a necessity for a Machine-
to-machine "layer" on top of existing DHT. Such a layer should provide the

2

Figure 1.2: Example of Distributed M2M Sensor Network.

functions needed for all possible types of messaging in the M2M network de-
pending on the use case.

Possible use cases involve large area networks, in the range of kilometers,
in which there is a large amount of nodes and the decisions to be made by
these nodes are usually not extremely complex but depend on the information
provided by rest of the nodes.

1.3 Structure of the Thesis

Chapter 2 explains different technologies related to this thesis.

Starting from concepts from The Internet of Things (Section 2.1), M2M (Sec-
tion 2.1.1) and Current Sensor Technologies (Section 2.2). Some of these tech-
nologies being the IEEE 802.15.4 standard (Section 2.2.1), Zigbee (Section
2.2.2), 6LoWPAN (Section 2.2.3)and CoAP (Section 2.2.4). The next section
deals with network monitoring and SNMP 2.3.

The next Section 2.4 treats different P2P technologies. It continues by giv-
ing an overview on the use of Distributed Hash Tables (Section 2.4.3), with
emphasis in the Chord protocol (Section 2.4.3) and RELOAD (Section 2.4.4).

Chapter 3 describes the different guidelines followed in order to design the
architecture of the M2M layer as well as different use cases in which the M2M
network could be deployed. In Section 3.3 we draw the main architecture.
Section 3.1 sets the main principles and in Section 3.2 the principles followed
in the design. Section 3.4 explains in detail the CoAP Communication, join-
ing and leaving procedures of the different nodes of the network, the CoAP

3

Name Registration Service and the Bookkeeping mechanism. Section 3.4.6
addresses some of the security concerns for WPAN, WWAN, CoAP, SNMP,
Name Service, the DHT and Bookkeeping. Finally in Section 3.5, we deal with
two proposed scenarios for this new technology: Dynamic traffic Signaling and
Water System Automation.

Chapter 4 describes the hardware and software used for the implementation
of the M2M layer. Section 4.2 shows the architecture for our prototype.

Chapter 5 sets the different conclusions that can be extracted from the thesis
and a summary of what it was achieved. It also sets some lines for future work
and improvements.

4

Chapter 2

Background

2.1 The Internet of Things

The European Commission [30] defines the Internet of Things as "things hav-
ing identities and virtual personalities operating in smart spaces using intel-
ligent interfaces to connect and communicate within social, environmental,
and user contexts". The book "Interconnecting Smart Objects with IP - The
Next Internet" [89] defines IoT as "a loosely coupled, decentralized system of
smart autonomous objects augmented with sensing, processing, and network
capabilities".

The phrase Internet of Things (IoT) is often used when representing the con-
cept of global network of connected devices. It is inspired by the extensive use
of Radio Frequency Identification (RFID) tags in transportation and logistics.
RFID chips are small, uniquely addressable chips used to identify objects.
They are as small as 0.3 millimeters and the cost of a passive RFID tag is less
than 15 cents of an Euro [63].

IoT is the logical evolution of RFID tagging. IoT shares similarities with RFID
since it will also involves very small devices embedded into other objects, it
is low-cost and ubiquitous. Both are uniquely addressable, RFID with the
Electronic Product Code (EPC) and IoT most likely with Internet Protocol
v6 (IPv6) and both can interact with other devices like mobile phones [81].

But IoT implies more than just addressing and retrieving data, IoT implies
that the devices are smart. The IoT vision foresees an enhancement of current
devices - sensors and actuators for instance - with connectivity to other avail-
able networks in order to interact with the world [71]. Smart objects can sense
and process data, cooperate, make informed interpretations of their surround-
ing environment [49]. Later on this data can be used for data mining purposes

5

so that the users or other devices can undertake the appropriate actions upon
the environment (adaptation) or themselves (self-configuration), all this done
via Internet.

In the case of IoT the types of device can be anything, whether RFID tags,
sensors, mobile phones, personal computers, portable game consoles, television
sets, cameras, home appliances and many others not envisaged yet. If the types
of devices are many, the amount of them can be staggering, some estimates at
Ericsson suggest that more than 50 billion devices will be connected by 2020
[29]. The number of devices will outnumber the number of personal computers
and servers available in today’s Internet. The approximation is taken from the
assumption that each telephony subscriber will have from 1 to 5 devices, each
vehicle too, different utilities (electricity, water and gas) would be automated,
and so on.

As seen in Figure 2.1, the IoT lies as a consequence of the growth of Wireless
Sensor Networks, Embedded Systems, Mobile computing, Mobile Telephony
and other computing and telephony areas that have thrived in recent times
[89].

Figure 2.1: Smart objects are at the intersection of current technologies.

Examples of this future scenario is that doors could be programmed to send a
signal when they are opened after some time and connect to a home automation
system. A person’s keys not only would be traceable [91] but they would
themselves inform of their location if they are lost. A patients recovery process
could be monitored and modified to his needs during the process. Buildings
and objects (furniture, appliances, vehicles,...) would adapt to each persons
characteristics, remember them, and share them with other objects depending
on context. In the industry, water systems could be fully automated and
dynamically leak-proofed. So would be distribution chains, with a full tracking

6

of every single object from manufacture to delivery and even after the delivery.
All these are examples of the radical impact that this kind of connectivity
would have.

To make these examples of the IoT become a reality, there are some factors
spotted in [41] and [11] that have to be addressed. Energy consumption needs
to be improved, therefore it is necessary to find better embedded power sources
and energy harvesting systems as well as to minimize the use of battery power.
It is important to consider the cost of each device, since small cost savings per
device have great impact overall. The size of these devices needs to decrease,
therefore better miniaturization and space optimization is required. Global
standardization is fundamental since we want these devices to interoperate,
specially since they will be produced by many different parties.

In order to make this scenario possible, machine-to-machine technologies need
to be studied and developed.

2.1.1 Machine-to-Machine

We will see that IoT and M2M are in many ways interwoven concepts. If IoT
comprehends a future scenario with billions of interconnected things, Machine-
to-Machine (M2M) is one of the enabling technologies to get to that world view.
Taking the M2M definition in [27] an example of M2M network would be home
automation.

In home automation, a sensor captures the temperature of the room, it sends
the information to another node connected to an actuator. Depending on the
information, that event can trigger an action that is carried out by the device
itself or in coordination with other devices of the home network. All this is
done without the need of human intervention.

Until now the Internet has revolved around human activities and human in-
teractions, but it is likely that in the future most of the active participants in
these interactions will be things instead. M2M communications have already
existed for some time, either in the form of classical client-server technologies
or as a byproduct of other human interactions with computers or other ma-
chines. Still, M2M as a defined technology is blossoming and it is mostly in
smart metering systems, fleet and asset management and telemetry.

Constrained Devices

Sensor devices are indeed constrained. They carry small packets due to the
limitations at the physical layer, which allows for a maximum of 127 bytes.

7

If they follow current IEEE standards for constrained devices, they will have
bandwidth with data rates of 250 kpbs at maximum for 2.4 GHz transmission.
Their minimum bandwidth will be 20 kbps for 868 MHz. They might be
movable and are usually deployed in ad hoc fashion since their location is
typically not predefined.

Due to the previous reasons, devices will often offer unreliable connectivity.
Also, devices will usually be in sleep mode in order to prevent battery drain,
and will not communicate during those periods.

These physical limitations will deeply affect the technologies that can be de-
veloped on them. Those technologies are studied in the following chapter.

2.2 Current Sensor Technologies

The following sections will deal with current sensor-related technologies. Ar-
guably, once a constrained environment was imposed, it provoked the creation
of adequate link layer protocols, for instance 802.15.4. Then different compa-
nies allied to develop on top of it a protocol stack, that is Zigbee. Current
efforts are placed towards the standardization of these technologies. The IETF
developed 6LoWPAN to align it with IPv6 and now CoAP is being standard-
ized as Application protocol aligned with HTTP.

2.2.1 IEEE 802.15.4

One of the approaches for the use of sensors, whether on home automation,
environmental and industrial monitoring or in any other scenario is that they
will be battery powered, they will have low throughput and low data rate, in
the order of few kbps. Therefore technologies like traditional Wireless Area
Network (WLAN) or Bluetooth are inadequate since the first is designed to be
used for traditional file transfer and multimedia applications and the second for
moderately high data rates. Moreover, they are not very energy efficient. MAC
protocols used by those technologies, IEEE 802.11 [4] and IEEE 802.15.1 [6] are
thus also inadequate since they were designed for relatively high-end devices
able to handle seamless roaming, message forwarding, and a data throughput
of 2-11 Mbps, not for constrained sensors. This necessity for communication
between sensors with constrained capabilities drove the creation of a Media
Access Control (MAC) standard that focus on low-power, short-range and low-
cost wireless communications, the IEEE 802.15.4 in 2003 and its revision in
2006 [5, 7].

Within the standardization body tasked with the creation of 802.15.4, the

8

IEEE 802.15 working group [28], there are seven Task Groups (TG) with
various focuses. For instance the IEEE 802.15.3 for High Rate WPAN (HR-
WPAN), the IEEE 802.15.1 for Medium Rate WPAN (MR-WPAN) and the
IEEE 802.15.4 for Low Rate WPAN (LR-WPAN)1. The main design charac-
teristics of 802.15.4 as defined by [5] are simplicity to install, reliability, short-
range, low-cost and long battery life. All this while maintaining a simple and
flexible protocol.

The standard specifies two possible types of device participating in a network:
a full-function device (FFD) and a reduced-function device (RFD). The net-
work must include at least one FFD, that will operate as a coordinator of the
Personal Area Network (PAN). This is necessary since a FFD has a higher
load, being able to communicate to both FFD and RFD. The RFD - usually
battery powered - can only communicate to an FFD.

This holds for the two possible topologies that are defined: star and peer-to-
peer. Star topology places the FFD as the center of the communication flow
and as a sink for RFD devices. In the peer-to-peer topology, several FFDs form
a mesh, the RFDs are connected to the mesh via an FFD PAN coordinator.
It is the latter topology that applies for our project since message routing and
peer-to-peer networking are implemented on higher layers.

The IEEE 802.15.4 follows the Open Systems Interconnection (OSI) seven-
layer model, defining communication at the physical and data layers. In Figure
2.2 we can see the whole ZigBee stack of which the two first layers are the
MAC and Physical layers defined by the IEEE 802.15.4. Without going into
specifics of the standard itself, since they are out of the scope of this thesis,
it is relevant to know that it provides 20-250 kbit/s data rate [5, 79] and it
operates in the 868 MHz frequency band, its maximum conductive power is of
in 25 mW 2 link-layer security is provided with 128-bit Advanced Encryption
Standard (AES) encryption.

Addressing can be done using 64 or 16 bits. This distinction depends on the
device within each WPAN, communications will probably use short identifiers
since the amount of nodes (sensors) per WPAN will not be more than 216. Data
transport is achieved by using frames as basic unit, these can be data, ACK,
beacon and MAC command frames. The standard also specifies a superframe
defined by the coordinating node. When the superframe is used, two beacon
frames act as its limits and provide synchronization to other devices as well
as configuration information. IEEE 802.15.4 has been shown to be efficient
when it comes to energy saving [51] at the cost of higher latency and lower

1More Information of these standardization efforts is available at IEEE 802.15 working
group site: http://ieee802.org/15/

2Note that the frequency and maximum conductive power values apply for Europe only.

9

bandwidth. In the case of battery powered sensors this is not too high a cost.

Two limitations of 802.15.4 are that, although it enables the possibility of
two different topologies, it does not provide multi-hop networking nor mesh
networking. Therefore it is the basis upon which other protocols have been
built, among others ZigBeeTM .

2.2.2 ZigBeeTM

To make a functional WPAN node, it is necessary to build the remaining lay-
ers on top of the physical and data layers that are covered by IEEE 802.15.4.
ZigBeeTM is a specification made by the ZigBee Alliance to build such a proto-
col stack based on the IEEE 802.15.4, it defines the network layer and provides
a framework for application programming in the application layer. Since the
ZigBee protocol is availed by many different partners 3 it focuses on defining
a general-purpose protocol that can be used either in industrial control, home
automation, medical data mining or any kind of sensing devices with similar
requirements.

The ZigBee protocol is well-known in the wireless sensors world [10, 31, 87]
and it can be considered a de facto standard until other standards and appli-
cations such as 6LoWPAN are further developed [21]. As it was mentioned in
2.2.1, being build on top of IEEE 802.15.4 [5], ZigBee fulfills the requirements
of low power consumption, low throughput and low data rate. It can also
accommodate as many as 254 nodes [28, 67], while alternatives like WLAN
and Bluetooth can only have a network size of 32 and 7.

ZigBee (see Figure 2.2) provides two main new layers, the ZigBeeTM Network
Layer (NWK) and a framework for the Application Layer (APL) [67]. The ap-
plication layer framework consists of the Application Support Sub-layer (APS),
responsible for providing a data service to applications and device profiles, and
the ZigBeeTM Device Object (ZDO), tasked with defining the role of a device
and initiating or responding to discovery requests. The ZDO also commu-
nicates with the ZDO Management Plane to deal with application requests
for network access and security.Manufacturers will in turn use the Application
Framework to create their own Application Objects (APO), up to 240 different
ones. An APO represents different application attributes or profiles that can
be defined on a single Zigbee device. A profile is a set of common messages or
actions that enable interoperability between ZigBee nodes. Some example of
profiles are those for heating, ventilation, lighting or industrial process control.

3Some of the promoters are Texas Instruments, Philips and STMicroelectronics among
hundreds of participants and adopters such as Cisco, Samsung, Huawei, LG, etc. More at
http://www.zigbee.org

10

For instance a temperature sensor on one ZigBee node can communicate with
a heating device in another node, and form a heating application profile. Being
dependent on the vendor these profiles might not be open like the rest of the
ZigBee standard. To interact between APOs, ZigBee allows forming clusters
that group related attributes.

Figure 2.2: Outline of the ZigBee Stack Architecture.

The NWK layer handles network address and routing and provides support for
initial device configuration, network bootstrapping, neighbor discovery, route
discovery and receiver activation. This layer defines three device roles:

1. A Zigbee end device that corresponds to an RFD or FFD in IEEE
802.15.4 (see Section 2.2.1) in the role of a simple device that only can
join and leave a network.

2. A ZigBee router that corresponds to a FFD with routing capabilities.

3. A ZigBee coordinator that corresponds to an FFD tasked with the man-
agement of the whole network and is the only device capable of creating
a new network.

Both ZigBee coordinators and routers shall also participate in the assignment
of logical network addresses and maintain a list of neighboring devices.

The APL layer contains the previously mentioned APS, ZDO and the Appli-
cation Framework containing manufacturer defined APOs. The APS provides
an interfaces between the NWK and the APL layers, which details are out
of the scope of this thesis. Nevertheless it is relevant to know that it creates

11

the APSDE-SAP that provides a data service allowing the ZigBee device to
execute standard network functions such as request, confirm, response and
indication primitives for data transfer.

2.2.3 6LoWPAN

Although not used in our prototype, since there are no capable devices in the
market (See Section 4.1). It is important to refer to the current standardization
efforts made by the Internet Engineering Task Force (IETF) on 6LoWPAN.
6LoWPAN, as defined in [79] enables the use of IPv6 on constrained devices in
an efficient manner. It does so by providing an adaptation layer and optimizing
protocols related to IPv6.

6LoWPAN follows the trend that low-power devices and low-power technolo-
gies are setting by enabling IPv6 addressing capabilities for the IoT 4. At
lower layers wireless technologies have adapted to provide low-power radios
with limited frame size and data rates such the ones used by 802.15.4 (see
Section 2.2.1), it is therefore the logical next step to provide adaptation at
higher layers too.

The main differences between 6LoWPAN and ZigBee is that ZigBee specifies
a whole protocol stack up to the Application Layer while 6LoWPAN "only"
aims at adapting IPv6 to restricted environments. In that sense, ZigBee does
not yet integrate with Internet applications and is very close to vendor specific
configurations. 6LoWPAN instead serves as a reference for future work and
for future applications that search for high scalability and communication with
Internet-based devices, regardless of vendor or of upper-layer protocol. In fact,
the ZigBee Alliance announced that it would start integrating 6LoWPAN (i.e.
IPv6) within its own ZigBee protocol stack [79] and there is previous work that
shows how ZigBee application profiles can be carried over 6LoWPAN [88].

As it is shown in figure 2.3, 6LoWPAN protocol stack is extremely similar to
the IP protocol stack. One of the main differences is that 6LoWPAN stack is
more constrained, 6LoWPAN has been defined to use IPv6 as network protocol
and is optimized for 802.15.4 as link protocol. Issues regarding error checking,
reliability and link layer compatibility are further explained in [5, 79] and out of
the scope of this thesis. Nevertheless it is relevant to know that 6LoWPAN’s
most basic requirements are framing and unicast transmission and address-
ing, requirements covered by the current 802.15.4 standard. In the transport
layer, User Datagram Protocol (UDP) is the protocol that better adjusts for
constrained environments,while using Transmission Control Protocol (TCP)

4A 128 bit address spaces allows for 340282366920938463463374607431768211456 ad-
dresses

12

Figure 2.3: Outline of the IP and 6LoWPAN protocol stacks.

would cause low performance and would increase the complexity of the proto-
col [79]. ICMPv6 is used in the same way as in IP, for control messaging and
network reachability and discovery. Transformation between full IPv6 and the
LoWPAN adaptation is done in routers at the edge of the WPAN islands (edge
routers) that have both Ethernet and 802.15.4 below IPv6, this implies that
they are likely to be a full-functioning 802.15.4 device (FFD). This transfor-
mation obviously has to be transparent for the nodes in the network and for
the IPv6 stack itself. The core of 6LoWPAN is explained in two RFCs of the
IETF [53, 64].

2.2.4 CoAP

Nowadays, the use of web services on the Internet is common in most ap-
plications. Web services services depend on the basic Representational State
Transfer (REST) architecture [33]. This architecture is well suited for M2M,
therefore some standardization efforts have started.

The IETF Constrained RESTful Environments (CoRE) working group has as
its main task to employ this REST architecture in constrained environments.
Their proposed standard is Constrained Application Protocol (CoAP) [78].

CoAP is not just a compression of Hypertext Transfer Protocol (HTTP) [32].
It has a subset of the HTTP functionalities that have been modified to make
the protocol suitable to IoT and M2M applications. Since it is fully compatible
with HTTP, CoAP can be used not only between nodes on the same WSN but

13

also between constrained nodes and nodes in the Internet. Some new func-
tionalities such as multicast, asynchronous communication and subscriptions
have been included.

CoAP is built on top of UDP and therefore has significantly lower overhead
and multicast support. This overhead reduction has a strong impact on the
battery life, drastically reducing sensor’s power consumption [18].

On top of UDP there are two layers that conform CoAP: Transaction and
Request/Response Layer.

The Transaction layer is used for communication between endpoints. It has 4
types of messages: Acknowledgment, Reset, Confirmable and Non-Confirmable.
If the message has to be acknowledged, then it is Confirmable. If it does not,
then it is Non-confirmable. Reset indicates that a Confirmable message was
received but cannot be processed. Confirmable messages are retransmitted
after a default timeout until the recipient acknowledges the message. The
transaction layer also provides support for multicast and congestion control
[26]

The Request/Response layer is responsible for the transmission of requests and
responses for resource manipulation and transmission. The REST request is
piggybacked on the Confirmable or Non-confirmable message and the REST
response on the Acknowledgment message.

CoAP is intended to be used in WSN, in these type of networks resources
likely change over time. CoAP therefore allows a client to constantly observe
the resources by means of observations: a client can register to a resource
by using a modified GET request sent to the server. When the value of the
resource changes and the sensor finds it relevant, it informs the server that
notifies each client having an observation relationship with the resource. The
duration of the observation relationship is negotiated during the registration
procedure [40].

With CoAP we have seen most of the state of the art protocols regarding
constrained devices. In our network we expect those devices to be managed
by one single entity. It will be necessary to develop a protocol to manage those
devices. Such a protocol will be inspired in SNMP. We will see more about
SNMP in the next section.

2.3 SNMP

The Simple Network Management Protocol (SNMP) is the most widely-used
network management tool for TCP/IP based networks. There are three ver-

14

sions, SNMPv1 in 1990 [16], SNMPv2 including applications [55] and SNMPv3.
Most of the specification was done in the first two, SNMPv3 mainly includes
new security and administration functions [84].

SNMP defines a protocol for the exchange of management information. It
represents management information by dividing nodes into two types: agents
and managers. Any node in a network includes one of these alternatives.

An Agent is responsible for collecting and maintaining information about its
local environment, providing that information to a manager, either in response
to a request or in an unsolicited fashion when something noteworthy happens
and responding to manager commands to alter the local configuration or op-
erating parameters. In the context of M2M, most nodes that gather sensor
information would be agents.

In the network we would have one or more managers. Managers usually pro-
vide some interface towards the human user, often this interface is web. The
interface is needed so that a human network manager can monitor and control
the different nodes of the network. The control comes by the issuing of com-
mands towards the nodes. In the context of M2M this commands will often
be associations between nodes and thresholds for sensors.

In order to control the nodes, SNMP provides four basic types of functions:
Get, used by a manager to retrieve an item from an agent; Set, used by a
manager to set a value in an agent; Trap, used by an agent to send an alert to
a manager; Inform, used by a manager to send an alert to another manager.

Those four functions are implemented in seven SNMP PDU (Protocol Data
Unit), used for communication between the SNMP entities:

1. GetRequest. A Manager-to-agent request to retrieve the value of a vari-
able stored by the agent.

2. SetRequest. A Manager-to-agent request to change the value of a vari-
able or list of variables.

3. GetNextRequest. A Manager-to-agent request to discover available vari-
ables and their values.

4. GetBulkRequest. A Manager-to-agent request for multiple iterations of
GetNextRequest.

5. Response. An Agent-to-manager response that returns variable bindings
and acknowledgements for GetRequest, SetRequest, GetNextRequest,
GetBulkRequest and InformRequest.

6. Trap. An Agent-to-manager asynchronous notification.

15

7. InformRequest. A Manager-to-manager acknowledged asynchronous no-
tification.

Current standardization work is being done in adapting SNMP to a distributed
environment. For instance, by using SNMP with RELOAD for network man-
agement purposes [68, 69]. We will see more about distributed networks and
P2P in the following section.

2.4 Peer-to-Peer (P2P)

In traditional client/server architecture, clients request information from a
single server entity, this entity in turn provides the information to one or
several clients. The typical characteristics of the client are that it initiates
requests and waits for replies and that it does not connect to a large number
of servers at once. On the other hand, the server entity can comprise one or
many servers that serve the same purpose or task and it never initiates the
communication. The server only waits to receive a request and then replies
to the client. In this model, the information concentrates on the server side
instead of the clients. If the server stops working, then the whole network loses
its source of information and therefore becomes useless. The need to overcome
this weakness lead to the creation of new ways to distribute the information
without entirely depending on one single entity, P2P is one of them.

Peer-to-Peer (P2P) architectures became popular in the late nineties, introduc-
ing significant advantages over Client-Server models. In a pure Peer-to-Peer
(P2P) architecture each of the machines (nodes) operates at the same time
as both client and server, having the same level of responsibilities as the rest
of the nodes. The definition of P2P is the "shared provision of distributed
resources and services" [77]. According to [77] P2P main features are:

1. Sharing of distributed resources and services, i.e. each peer acts as both
client and server.

2. Decentralization, although depending on the P2P topology there might
be a central entity for indexing or for security (i.g providing the secu-
rity certificates), in P2P networks generally every node is equivalent to
any other and there is no node that knows the whole network topology.
Nevertheless between fully centralized and fully decentralized structures,
there is a range of different structures, which boundaries are not clearly
delimited.

16

3. Autonomy, nodes can decide what to share with the rest of the P2P
network.

The rise of public cloud computing services [54] and other similar technologies
are steadily concentrating the information and the control on the server side,
which is now named cloud. But it could be argued that often in those cases
where the overall functionality is that of a server-client model, the server side
is a network arranged following an architecture similar to that of P2P (see
Figure 2.4.1).

Figure 2.4: Some composed network topologies: (1) Centralized/Ring, (2)
Centralized/Centralized, (3) Centralized/Decentralized.

Nevertheless P2P has followed an evolution and currently there are not many
examples of P2P-only or Client-Server-only topologies. Indeed, depending on
how we want to organize the information we will have different topologies that
adapt more efficiently to the different scenarios [52]. For example the Central-
ized/Ring Topology is used in robust web servers (see Figure 2.4) combining
the simplicity of a Client-Server system with the robustness of a ring. Cen-
tralized/centralized topologies are also used in some web applications, when
there is the need for a central control but the features of a central server are
distributed among other machines. This is the case of Google as for instance,
the web server contacts a distributed database of links. Centralized/decen-
tralized topologies are used to enable fault tolerance and centralization at the

17

same time. Often used in the advanced hybrid unstructured P2P systems like
Gnutella 0.6, Spotify or Skype [38]. P2P can also be classified in structured
and unstructured according to the way the nodes are organized.

2.4.1 Unstructured P2P

An unstructured P2P network is one in which there is no clear definition of
what the topology of the network should be. Since there is no definition of
the location of the nodes, the searching process sometimes consumes a lot of
bandwidth and processing power. These type of networks were used in the
first P2P applications. According to their degree of centralization, they can
be centralized, pure and hybrid P2P (see Figure 2.5).

Figure 2.5: Different types of P2P: (1) Centralized, (2) Pure and (3) Hybrid.

Centralized P2P

In the early stages of P2P simplicity was key. This and the ability to control
motivated the creation of simple centralized schemes that contained all fea-
tures of P2P systems but that required a central entity to provide indexing or
security. A typical example of this type of P2P is the original Napster which

18

used a central server for the lookup of content in the P2P network. This ar-
chitecture provided low message overhead O(1) and 100% success rate in case
the content is on the network. Some disadvantages of this networks were that
they were not very scalable nor robust, since by taking out the central server
the network would become unusable, as it happened.

Pure P2P

Pure P2P networks solved the dependency on a central entity, in them any
node could be removed without loss of functionality in the network. These
networks are fully decentralized and very robust. Typical examples of pure
P2P networks are Freenet and Gnutella 0.4. However, these networks have
excessive communication overhead O(N2) and connections between peers since
requests are flooded in the network. Neighbors recursively forward requests in
order to (eventually) find a node with the content that was looked up. Taking
as an example a Freenet network, if a peer needs to find one particular resource,
it has to send a request to one or multiple adjacent nodes which will forward
the request to their adjacent peers and so on. This can cause many security-
related problems since an exponential request attack can be easily carried out.
Therefore, each message carries a time-to-live (TTL) timestamp, which forces
the elimination of each request after a certain number of hops. Moreover, this
architecture does not guarantee that the search will be successful at all.

Hybrid P2P

Second generation unstructured P2P networks took core concepts of both cen-
tralized and pure P2P. Hybrid P2P aims at tackling the problem of flooding by
having some peers manage more signaling traffic. These new peers are called
super-peers, the rest are leaf peers. Super-peers are usually elected depending
on speed, network congestion and other parameters among the leaf peers. For
instance Gnutella 0.6 uses this system to provide better search. All the same,
even in hybrid networks, where there is no single point of failure, there is still
high signaling traffic because of decentralization.

2.4.2 Structured P2P

Structured P2P networks and DHT-based ones in particular, aim at dimin-
ishing signaling traffic - a problem that is endemic in unstructured P2P. The
solution it presents is to order the nodes in the overlay. In DHT-Based P2P,
like in Chord [86, 3] or CAN [2], peers are organized and indexed, position is

19

predetermined by an algorithm, thus each peer can infer where other peers are
located. In order to provide lookup, Distributed Hash Tables (DHTs) are used.
DHTs used in P2P assign an unique ID when a peer joins the P2P overlay and
another ID or key to the data it wants to store. The key indicates the position
where the data is stored, and it is created by means of a hashing function.

When a peer wants to retrieve some information it will perform the same
basic function, mapping the requested content into a value and consult its
hash table. Chord for instance maps content into a linear space, others map it
into different forms. A hash table contains a range of keys that indicate which
nodes in the overlay are responsible for the queried data. If the node does
not find the responsible node among the peers, the request will be forwarded
throughout the overlay. The way it is forwarded is determined by the specific
overlay algorithm of the network. The three steps common to most DHTs are:

1. Mapping content or node into the overlay space by means of a hash
function.

2. Routing to a (Key Value) pair, by starting the lookup at an arbitrary
node of the DHT and forwarding it until finding the right peer.

3. Making a direct connection and retrieving the content.

DHT-Based P2P networks provide the same robustness and scalability as other
P2P networks. Additionally, they have the advantage of less communication
overhead O(logN) and no false positives when doing a search. However, these
networks lose the possibility of doing wild-card searches for content in the P2P
overlay network.

The topics of the Distributed Hash Tables and Chord are more thoroughly
explained in the next section 2.4.3.

2.4.3 Distributed Hash Tables (DHT)

As it was previously stated, structured P2P networks offer high scalability
and reliability. One of the problems though, is that they have high latency
for content lookup, especially when the network is large. In those cases it is
becoming customary to adopt a Distributed Hash Table (DHT) model in order
to organize information for better lookup and less traffic overhead O(logN).

A hash function or hash algorithm is a mathematical function that transforms
a large amount of data into a small value, which usually is also encrypted.
These functions are used on hash tables or hash maps, which are structures

20

made for referencing, as they associate the hashes or keys with real values.
Hash tables have various purposes; one of them is indexing, keeping an array
of (key, value) data types. They are useful for lookup of information since the
indexing makes the process very efficient.

On P2P networks, the information is stored at the endpoints of the network
(i.e. peers) rather than on a single or various servers. The hash table approach
is not possible here since the data has to be distributed more or less equally
among the peers. Instead, Distributed Hash Tables (DHTs) are used. They
are created by storing the contents of the hash table across a set of peers on a
P2P network according to certain algorithms to ensure optimal distribution.
Each of the peers will be responsible for part of the key space.

Chord

One of the best known DHTs is Chord, a fully distributed peer-to-peer lookup
algorithm [86]. Chord has just one operation: providing that you give a key,
Chord can map it onto a node. Chord uses a distributed hash table for routing.
If we have N nodes and K keys, each node is responsible at most for (1 +
O(logN))K/N keys. It was demonstrated in [86] that Chord can solve any
given lookup by sending information to a maximum of O(log N) nodes. This
means that even when N is a large number, the number of messages sent by a
node using Chord will still be relatively small.

The nodes are arranged on a ring. On the Chord ring each node has a successor
and a predecessor. The predecessor of a node is the peer in front of it when
traversing the ring clockwise. In the same way, the successor of a node is
the peer following it. Since P2P nodes join or leave the network freely, nodes
maintain multiple successor pointers to improve robustness.

In Figure 2.6, we can see an example of a Chord ring. In Figure 2.6(a) Nodes
0,1 and 3 are connected while nodes 2,4,5,6,7 are not. The size of the network
is 8 and the currently available files/keys map to nodes 1,2 and 6. Since node
6 does not exist, the file (key=6) is mapped to the first available node, in this
case node 0. The file (key=2) is mapped onto node 3. Chord continually maps
the files along the Chord ring as peers join and leave the network. For instance,
In Figure 2.6(b), if the Node 6 joined the overlay, the file (key=6) would be
stored in that node, and also the successors of the nodes would vary according
to this new topology. In Figure 2.6(c) when node 1 leaves the overlay, the
finger tables are adjusted. And the key node 6 is responsible for are assigned
to the next peer, in this case Node 3.

In Chord, there are two routing modes: iterative and recursive.

21

Figure 2.6: Example of a Chord ring (a), with the finger tables of the connected
nodes. Examples of a node joining (b) and leaving (c) the overlay

1. In recursive routing, the request is forwarded to the next hop until it
reaches the responsible node who will reply to the initial node. In Chord,
the response is not returned directly, but along the reverse path followed
by the query. In Figure 2.7(a) we can see an example in which node 1
asks for key 12. Node 1 first checks its own table but is not responsible
for that key so it forwards the request to the next hop, which is node 10.
Node 10 checks its routing table, and forwards the request to the node
that is supposed to have the information. This node is node 14. Finally,
node 14 replies to node 1 with the value associated with key 12.

2. Figure 2.7(b) shows an example of iterative routing. The request in-
volves the very same nodes but the message is not forwarded to the next
hop. Instead, each node along the path returns a response to node 1.
Although recursive routing has a better performance, iterative is usu-

22

Figure 2.7: Examples of recursive (a), and iterative routing (b)

ally recommended for security reasons, since the message flow can be
properly controlled.

2.4.4 RELOAD

P2P technologies are often used in combination with other protocols. A com-
mon trait is to take the lookup properties of a DHT based P2P network as
a rendezvous mechanism to establish a connection. Once the connection is
established, another application protocol can be used. Some research and
standardization efforts are exploring the use of DHTs for communications. In
particular, Peer-to-peer Session Initiation Protocol (P2PSIP).

In traditional Session Initiation Protocol (SIP) [75] architectures, there is a
hierarchy of SIP routing proxies and SIP User Agents (UA) that follow a
client/server structure. To start a communication session using SIP, a SIP
user agent will send a SIP invite request to a proxy which will send it to the
destination UA of the message.

In P2P networks, this type of communication is not possible, since there are
no central servers to centralize the mapping. Instead, the mapping function is
distributed among the peers of the network using a DHT.

The IETF P2PSIP Working Group [1] is chartered to develop a P2PSIP stan-
dard. In 2007, there were several competing proposals for the P2PSIP peer
protocol; RELOAD [43], Peer-to-Peer Protocol (P2PP) [12], Address Settle-
ment by Peer-to-Peer (ASP) [44], Service Extensible P2P Peer Protocol (SEP)
[45], Extensible Peer Protocol (XPP) [61] and Host Identity Protocol HOP
(HIPHOP) [20].

23

At the end of the year, RELOAD and ASP were merged and by February 2008
also P2PP was merged to the combined RELOAD/ASP protocol. Currently
the P2PSIP WG has focused its efforts on the development of the REsource
LOcation And Discovery (RELOAD) protocol, which is the peer protocol to
be used in P2PSIP networks. Its main characteristics are defined in [43, 14, 15]
among many other documents.

RELOAD provides NAT traversal mechanisms with Interactive Connectivity
Establishment (ICE) [73], it can support various applications and provides a
security framework. Moreover, RELOAD also allows the use of various DHT
algorithms in the form of topology plugins. The one that currently used is
Chord [60].

RELOAD supports two types of nodes: peers and clients, both of them are
identified by NodeIDs. Peers are nodes that run the DHT algorithm and can
route and store data. Clients do not provide any of those functions but can
access the overlay services by connecting to a peer. Data stored in RELOAD
is referred to as resources, identified by resource-ids. Its rendezvous features
make it very suitable for locating nodes in a distributed environment such as
M2M.

Its architecture is divided in three main parts, as shown in figure 2.8: Usage
Layer, Topology Plugin, Overlay Link Layer.

Figure 2.8: Major components of RELOAD.

24

Usage Layer

RELOAD is intended to be easily extensible. It provides the concept of usages.
Each application that wishes to use RELOAD defines a RELOAD usage and
interacts with RELOAD by a common Message Transport API , leaving the
core of the P2P protocol untouched. This is why it would be realtively easy
to design a CoAP usage for RELOAD for M2M, similar to the one presented
in this thesis. Applications can use RELOAD to store and retrieve data, as
a service discovery tool or to form direct connections in P2P environments.
Some already defined usages are the SIP usage [42], the certificate store usage,
the Traversal Using Relays around NAT (TURN) [74] server usage and so
on. Message Transport layer provides a generic message routing service for
the overlay, that is sending and receiving messages from peers. The Storage
component is responsible for processing messages relating to the storage and
retrieval of data.

Topology Plugin

Following again the extensibility principles, pluggable topologies are designed.
Although in order to interoperate with other implementations it is mandatory
to implement Chord. The topology plugin defines the content of the messages
that will be used in RELOAD, the various procedures to join and leave an
overlay, hash algorithm, etc. To set up connections in the open Internet, there
is a layer to be used for NAT Traversal mechanism, the Forwarding and Link
Management Layer. This layer uses Interactive Connectivity Establishment
(ICE) [73] to traverse NATs.

Overlay Link Layer

At the moment both TCP and UDP are used at the link layer. Security
is ensured by using Transport Layer Security (TLS) [23] over TCP and and
Datagram Transport Layer Security (DTLS) [72] over UDP.

25

Chapter 3

Design

The goal of this project is to provide a M2M communication enabler (M2MCE)
to provide functionalities to enable M2M communication. Such functionalities
are resource translation, bookkeeping and addressing. Also as part of this
thesis the messaging between nodes in the M2M network needs to be solved.
A generic scenario sample is shown in figure 3.1.

The overal architecture we have designed consist on a set sensors or local
nodes (LN) that form different LR-WPANs. The different LR-WPANs cannot
intercommunicate with each other since they are placed several kilometers
apart. LNs are also constrained in power and computational capability.

LNs gather data from their surrounding environment and share it with other
nodes of the network via a proxy node (PN) that acts both as a WPAN co-
ordinator and as an Internet enabled device. The use of a PN is necessary
to connect the different LR-WPANs together. PNs may also have a sensor or
actuator module attached to them and are not as constrained in resources as
the LN devices are. Still PNs consume much less power than, for instance,
personal computers do. A stripped down version of the PN is the wide area
node WN, a device that is part of the DHT overlay, but is not responsible for
any subset of LNs.

A Monitoring and Controlling Node (MCN) is used to monitor both WNs and
PNs as well as LNs and their resources. This node is sporadically connected to
the overlay and networkwise does not play a role more significant than the one
played by a WN. Its main task is to create associations between the different
devices to respond depending on the use case.

The M2M Communication Enabler layer (M2MCE) is used to interconnect all
the parties: PNs, WNs, LNs, MCN and actuators. M2MCE bridges WPAN
networking, WWANs and MCN monitoring. All PNs have to be addressable

26

Figure 3.1: Architecture of the system

and must be able to create associations between each other depending on the
scenario. In the case of the LNs, we would like to have used IPv6, 6LoWPAN
and CoAP on top of IEEE 802.15.4 but due to higher availability we have
chosen ZigBee. To enable wide are deployment and wirelessness, we have
chosen 3G and GSM to connect PNs, WNs and the MCN. The application
protocol to be used to address and retrieve resources in the overlay is CoAP.
To monitor and control de nodes we have chosen SNMP, being as it is the
mainstream standard. The hardware we used is discussed in the following
section.

The network must be easily scalable and robust against failures, therefore a
DHT overlay is used to connect the WNs and PNs. LNs share the information
to the network via the PNs. The DHT algorithm we chose is Chord, since it
is compulsory to be implemented in RELOAD and RELOAD has the main
architectural principles we are looking for. The DHT is used for lookup of the
nodes of the network in a similar way as a DNS does. The DHT is part of the
M2M communication enabler (M2MCE) that is also used for Universal Re-
source Identifier (URI) translation and as a bookkeeping mechanism, storing
the information of the different nodes of the overlay at any given time. Mes-
saging between the MCN, the PNs and WNs is also enabled by the M2MCE.
A simple communication scenario between the MCN, PN and LN is shown in

27

figure 3.2).

Figure 3.2: Sample sequence diagram of an MCN creating an association with
a PN. The MCN first retrieves the temperature, then it sets an alert in case
the temperature rises above a predetermined threshold.

3.1 Motivation

The M2MCE acts as a layer to enable different functionality for both nodes
and MCN. M2MCE is necessary for the following reasons:

1. The M2MCE main task is to bridge both MCN and sensor networks and
allow the sensor information to be reachable for the MCN and for other
nodes. For this PNs and WNs have Internet connectivity and are IP
addressable.

2. A P2P distributed environment is more robust against failure than a
single server case. We believe robustness pays of over message overhead
due to P2P networking.

28

3. The M2MCE has to run on proxy nodes. This is because LNs are too
constrained to run our P2P implementation on them. In fact as we show
in [57], although running RELOAD on mobile phones is entirely possible,
it consumes too much battery power draining it completely in just few
hours.

4. It is necessary to keep a database of the nodes of the overlay, as well
as different parameters. For that the M2MCE provides a bookkeep-
ing mechanism that efficiently stores this information. Such mechanism
must provide cohesive results and avoid unnecessary replication. Data
aggregation as well as functionalities similar to the ones provided by a
server are also necessary.

5. The system must provide functionality to enable nodes to address each
other using standardized protocols. Since sensors can be heterogeneous
in nature and PNs too. It is important to align to current standard
communication protocols to ensure compatibility. For this reason we
chose CoAP, Chord and SNMP since they are the standardized proposals.

6. The M2MCE should allow nodes to make independent decisions based
on the information in the network. In traditional WSN there is a single
server or central point of control that gathers data, makes decisions and
issues commands. In our model any node can retrieve important infor-
mation from other nodes in order to make an informed decision and send
an order to the actuator. These decisions are set by the the MCN and
by state changes in the network.

3.2 Design Principles

The M2MCE layer is designed following different principles drawn from the
constrains made by the technology and application scenarios. These princi-
ples subsequently affect the design and implementation of the M2MCE. The
principles are:

1. Distributed Environment: The M2MCE should enable the distribution
of the storage and node location service.

2. Scalability: The M2MCE should be operative at all times, regardless of
the number of nodes in the overlay. This is particularly critical for the
location and bookkeeping functionalities.

3. Security: The M2MCE should provide security for connections between
peers, for messages sent in the network and for bookkeeping functionality.

29

4. Transparency: From the perspective of the other layers, M2MCE should
hide the complexity of the DHT and present only the functions that are
required.

5. Power efficiency: Although the nodes of the overlay are connected to
a power source, they might be submitted to periods in which they will
run on battery. Therefore unnecesary signaling should be avoided when
possible.

6. Interoperability: The M2MCE should enable heterogeneous devices to
communicate between each other. Currently there are three different
types of devices intended to use the M2MCE. It should also be assumed
that future nodes may have different architectures and functionalities,
the M2MCE should therefore provide a transparent interface towards its
different functions.

3.3 Architecture

Due to the previous motivation and principles the architecture is as shown in
figure 3.3, using a WN as example. The main API to the M2MCE provides
access to the different functionalities. It provides access to DHT forwarding,
joining and leaving of the overlay. It also allows access to the Storage compo-
nent, which is responsible for processing data, retrieving messages and has the
bookkeeping functionalities. It provides name resolution for both the Proxy
Node, Monitoring and Controlling Node and the Wide Area Node intelligence.

Figure 3.3: Architecture of the M2MCE in a WN.

30

The Proxy Node aggregates the data from the WPAN and acts as a bridge
with the network. To locate the appropriate node it will use the M2MCE
and the DHT. Wide Area Nodes, Proxy Nodes and the MCN use common
protocols based as IP, like UDP, SNMP and CoAP. In figure 3.4 we can see
the ZigBee transceiver and the associated stack towards the WSN, also the
Gumstix Board and the protocol stack used towards the Internet, which is the
same for the Wide Area Nodes and only changes at the application level.

Figure 3.4: Protocol Stack of the Proxy Node (PN).

In this architecture the M2MCE contains a DHT, in our case we have selected
Chord. The design is intended to use a subset of the RELOAD protocol
for P2P signaling. Nevertheless, in the implementation we used Peer-to-peer
Protocol (P2PP). RELOAD is intended to use Session Initiation Protocol (SIP)
as application level, in our case we will use CoAP instead.

3.4 Design Details

3.4.1 CoAP communication

In our scenario communication between sensors and PN uses ZigBee due to its
availability. Nevertheless, we believe that a standardized solution would be a
better approach. Therefore we consider the practical use of CoAP.

31

CoAP provides four types of messages Confirmable, Non-Confirmable, Ac-
knowledgement and Reset. For communication between overlay nodes we will
use Confirmable messages when acknowledgment is required. PNs and WNs
are connected to a power source and running a DHT, therefore they can run
a CoAP server with no major problems.

Between LNs and PNs we will have two types of messages: Periodic updates
and Direct queries.

1. Periodic updates - They are the most common type of message. We have
designed our LNs to often be in sleep mode and only transmit during
short periods of time, when the value they are registering goes over a
pre-established threshold. In those cases the LN will go out of sleep mode
and will send the new value of the resource to the PN. The PN in turn
will update the value in its cache. This periodic updates do not need to
be confirmable, since the sensor node should go to sleep mode as soon
as possible, and listening for an ACK would consume battery. Moreover
Confirmable messages would create unnecessary overhead, since they are
retransmitted until the recipient acknowledges them.

2. Direct queries - Ideally they are not very frequent. Since LNs are on
sleep mode most of the time when the PN receives a query for a resource
stored in the LN, it will attempt to retrieve the latest information. If
that is not possible it will reply with the latest cached value. If the LN
is awake at that time then it will reply with a Confirmable message, wait
for the ACK or Reset and go back to sleep mode. Waking times for LNs
can be set by the MCN, the PN or agreed upon the respective parties.
We will use modified Confirmable messages, retransmitting a minimal
amount of times and increasing the timeout between retransmissions.

3.4.2 Joining of PN and LN

According to our architecture, before a WSN is accessible by the nodes of the
overlay, the PN itself has to be part of that overlay. To join the overlay, it needs
a CoAP Name, that will be either set on a configuration file or configured via
the MCN. For our ideal M2M network, we are assuming that nodes are using
IPv6 and that no NAT traversal mechanisms are required. If there is a need
for NAT traversal, ICE should be used as it is recommended in RELOAD.
Note that in the practice, most operators still assign only IPv4 addresses and
that ICE is usually a must.

32

Joining of PN

The following joining procedure applies for all overlay nodes and is based on
the joining procedure specified in RELOAD. In our design we assume that
when a PN joins the overlay it should receive a NodeID from the enrollment
server or, in case there is no such server, a Bootstrap Peer (BP) can play that
role. For security purposes, it must also have a private key certificate that
matches its NodeID and the public key certificate of the MCN.

In general, there are three steps to join the overlay: Forming connections to
other peers, acquiring the data to be stored and updating other peers of that
fact. In the case of the PN, the steps are shown in figure 3.5:

1. First, the Proxy Node must connect directly to the Bootstrap Peer (BP).
In order to do so, the BP should have a public IP address. This is because
this is the first connection for the PN.

2. After that, the PN sends a series of probe messages to the BP to populate
its routing table.

3. The PN sends requests to initiate connections with other peers in the
overlay in order to populate the routing and the finger tables. The latter
is necessary for the Chord based DHT. This connections are routed via
the overlay -they are not direct connections- since the PN is not yet part
of the overlay.

4. The PN enters all the peers it contacted into its routing table. The peers
that the PN has contacted can be used in the future as BP, since their
IP addresses are also stored.

5. The PN then needs to get a copy of the data it is now responsible for
storing. For that, it will try to contact the Admitting Peer (AP) that
was until that moment responsible for that data. The PN will request
to join to the AP. The AP should in turn respond.

6. The AP will then store in PN the overlay data that PN will be responsible
for.

7. The AP sends the PN an update explicitly labeling PN as its predecessor.
It also sends an update to all of its neighbors with the new values of its
neighbor set (including the PN). At this point, PN is part of the overlay
and responsible for a section of it. AP can now forget any data assigned
to PN and not itself.

33

Figure 3.5: PN joining the overlay.

8. The PN now knows the addresses of its predecessors (the same as AP’s)
so it connects to them. The PN now has a copy of the data and is capable
of routing messages and receive them. Therefore it sends updates to all
the peers in its routing table telling them it is ready to go.

9. The PN updates its bookkeeping information in the overlay, such as a
timestamp indicating the time it joined, battery status, IP address, name
and so on.

At this point the PN is part of the overlay. For our prototype the MCN is

34

controlling the addition of nodes to the network. It is then the MCN who
switches on a sensor and permits it to make its resources available. From a
design perspective it is more convenient if the WPAN islands are independent.
Therefore in the design the MCN has been excluded from the LN addition
procedure.

Joining of LN

According to our proposal, once the PN has updated its bookkeeping informa-
tion, the next step is to make the WPAN nodes it is responsible for accessible
from the DHT. PN also is the coordinator of the WPAN. It is therefore a FFD
device, responsible of the initial configuration of the WPAN network. The
WPAN joining procedure is based on the one described in ZIGBEE and most
of its details related to WPAN Management are out of the scope of this thesis.
As shown in figure 3.6, the relevant steps are:

Figure 3.6: LN joining the WPAN.

1. First, the PN will choose a free WPAN ID by scanning for potential
channels and discarding the ones in use.

2. Then, if encryption is required, the PN will generate the relevant network
security keys and encryption options. Now a LN is capable of joining
the WPAN network if it conforms to the security policies and operates
in the same WPAN channel.

3. The LN can join the network if the PN permits it.

35

4. The PN will store a record of the LN as well request from it the different
services it provides. The information stored is identity, service type,
supported access methods, and availability.

5. This information can now be stored in the overlay via the M2MCE in
the PN.

Now the resources/services provided by the LN are available to other nodes
of the overlay. At this point we have a PN that is part of a DHT and WPAN
coordinator. The next steps is to make its resources addressable. Their infor-
mation is stored in three places: the LNs themselves, the proxy node and the
DHT. Each node must store its CoAP Name and the IP address, see Section
3.4.4 for more information about this. Apart from that, different services in-
formation are stored, such as join/leave timestamps and various status values
(battery, connectivity or update frequency). Details related to bookkeeping
will be explained in greater detail in Section 3.4.5.

3.4.3 Leaving of PN and LN

The following leaving procedure applies for all overlay nodes and is based on
the leaving procedure specified in RELOAD. In the case of the PN, leaving
the overlay is relatively simple. As shown in figure 3.7, there are two ways a
node would leave: gracefully and ungracefully.

Graceful leaving is performed when a node departs from it and wants to update
the overlay of that fact. The steps are:

1. The PN updates its bookkeeping information in the overlay, it will also
update the information that the LNs it is responsible for.

2. The PN sends a leave message to all its neighbors informing them about
its departure from the overlay. They will in turn acknowledge it and
reply back.

3. Upon receiving a leave request, peers will update their own routing table,
store and update to re-estabilize the overlay.

4. The nodes remove the PN from their own table

Ungraceful leaving implies disconnecting without storing the data that the
node is responsible for in another peer nor updating other peers. This data
loss is paliated by the automatic replication mechanisms of the DHT.

In both scenarios, the periodic overlay stabilization will afterwards update the
rest of the nodes [43, 59].

36

Figure 3.7: Proxy Node and Local Nodes leaving the Overlay in a graceful (a)
and ungraceful (b) fashion.

3.4.4 CoAP Name Registration Service

We propose a similar service to a Distributed DNS (DDNS). In our case the
resource ID is calculated by hashing the CoAP name of the storing node. That
hash will give the location where the value should be stored in the overlay. The
value to store is the IP address of the storing node in the case of the PN, WN
and MCN. In the case of LNs, the PN will store the information on their
behalf, the IP address will be its own, since ZigBee devices do not have IP. In
the future, we will use CoAP and IP, and the stored value would be the actual
address of the LN. The value can be overwritten at anytime by the owner of
the data.

As an example, a proxy node could register its IP address "123.45.67.89"
under its CoAP Name, "pn_23". When a node needs "pn_23" IP address to
retrieve some resources, it queries the overlay for "pn_23" and gets back IP
address "123.45.67.89". The node can then start a CoAP direct connection
with "pn_23".

3.4.5 Bookkeeping

Retrieving node information from the overlay can be done in three different
forms:

37

1. Accessing the LN information directly. In this case a node in the overlay
will do a lookup of a CoAP name that will return the IP address of
the responsible node. Then it will form a direct connection and send a
CoAP get request. The receiving node (PN or WN) will then translate
and forward the request to the actual sensor. Then sensor will reply and
the PN will forward the message via CoAP to the requester.

2. Accessing the cached information in the PN. Same procedure as the
previous one but when the PN or WN gets the request, it will access the
latest cached copy of it. This is done to save battery on the sensor node.
The trade-off is that the sensor data might not be up to date.

3. Accessing the cached information in the Bookkeeping mechanism of the
M2MCE. For our use case it is necessary to access individual node in-
formation, for that we do a lookup in the DHT of the particular node.
Often, it would be necessary to know the status of all the nodes in the
network at the same time, what is more to keep track of which nodes are
there and which have departed. Moreover it would often be required to
keep initial sensor information in the overlay and the latest list of nodes
that have joined or left the network.

Bookkeeping can not be left to the DHT alone. A large increase in nodes
would cause a message overhead and that the system’s topology over time will
eventually offset the benefits of having such cache.

The solution we propose is a two layered DHT. As it is shown in figure 3.8
we would have the traditional Chord overlay for lookup functionality of node
information. We will also have a second DHT that will store the bookkeeping
information.

Similar approaches have already been taken, for instance in [80] a structured
DHT is used on top of an unstructured one, being the structured one used for
lookup. In fact, the problem of managing shared resources and their access
policies is being currently standardized [48, 70] to allow users to share their
write access to specific resources with others peers.

Nodes that perform database tasks are called database nodes. Database nodes
are tasked to store the bookkeeping information. In our network, all peers have
similar computational power and network bandwidth. Therefore peers will
become database peers on a random basis, depending on network conditions.
We favor the hybrid P2P architecture since we aim at making the system fully
distributed and at retrieving all data in just one query. In the future, data
management techniques such as these can be used as a core part of any M2M
network when we need to retrieve overlay status information [37]

38

Figure 3.8: Architecture of the bookkeeping mechanism

PNs should not inform the overlay about all changes that occur in the LNs.
That would create a large message overhead, since theoretically there would
be several thousands nodes. Moreover it would drain the PN’s battery. How-
ever, when critical changes do occur, they can be updated in the Bookkeeping
mechanism.

Although the information of the nodes matches a single resource ID in the
overlay, it is not stored only in one node. Instead we distribute it among the
nodes in the Bookkeeping overlay layer. Each node keeps a fraction of the list,
at the end of each part, there is a pointer to the next. The pointer contains
the NodeID of the next responsible node, as it will be explained in detail in
the security Section for bookkeeping 3.4.6.

3.4.6 Security

In our design we made several assumptions. First, we have not developed how
certificates are distributed. In the design, these certificates are assigned by a
central server which also assigns Node-IDs. In the practice we use self-signed
certificates. Second, we are assuming that the MCN knows all public key
certificates of the nodes in the overlay and that all nodes in the overlay know
the public key certificate of the MCN.

Considering that, security in this design is done at two different levels: WPAN

39

security, this involves the security of the communications between the WSN
nodes; WWAN security, this involves the security between the DHT nodes and
application level security on CoAP and SNMP.

WPAN Security

Security in Zigbee is already managed by the Trust Center. The Coordinator
of the WSN takes that role, being the repository for security keys. The TC
decides whether to allow or disallow new devices into its network. Ultimately,
for our prototype, that decision is delegated from the Proxy Node to the
Monitoring and Controlling Node. ZigBee uses three types of keys to manage
security: Master, Network and Link key. Their use is explained in detail in
the ZigBee specification [67].

Every node must have a shared key that is the same for all the nodes in the
network. Link Keys are used between devices that communicate with each
other. Master Keys are used as an initial shared secret between two devices
when they perform the Key Establishment Procedure (SKKE) to generate
Link Keys.

As shown in figure 3.9, there are two auxiliary headers added at the Network
and at the Application layer, moreover the application payload is encrypted.
Integrity protection adds a Message Integrity Code (MIC), this is a signature
bound to the originator of the message that provides integrity protection.

Figure 3.9: Unsecured (1) and secured (2) Zigbee PDU.

40

WWAN Security

WWAN security is done in three different areas: Overlay messaging, CoAP
and SNMP, CoAP-IP mapping and Bookkeeping Security.

Overlay messaging security

Each DHT node shall have a list of certificates of the nodes it has contacted.
We used the same certificate as specified in RELOAD, X.509 [19].

The signature shall be computed for each WWAN node’s CoAP name, their
NodeID in the DHT and the ID of the overlay they are in. In the case of the
WPAN nodes, the PN will act as a proxy storing each LNs certificates and
operating in their behalf. This is possible since the PN is also the Trust Center
of the WPAN, being the repository for security keys in WPAN. Furthermore,
like CoAP, we have chosen to send messages using an encrypted transport such
as DTLS, therefore the communication is always encrypted.

We use standard public/private key cryptography to verify and generate sig-
natures. When parsing the message we would use the following cryptographic
procedure to verify the signature (see Figure 3.10).

The process starts when a node stores data in the overlay or sends a DHT
message. We are now assuming our practical example, in which the certificate
is self-signed. First the hash over the message will be calculated using SHA-1
[25] and then the hash will be encrypted using the RSA [46] algorithm and
the private key of the sender. The certificate is also signed using the sender’s
private key. Then the certificate and the signature will be included in the
message that will be sent.

When the receiver gets the message it will first get the certificate of the sender.
The receiver will verify the certificate and obtain the public key of the sender.
Then it will parse the signature by first decrypting it. For that it needs the
previous public key and the RSA algorithm.

Once the signature is parsed, the original hash of the message will be obtained.
Then another hash over the message will be calculated on the receiver side,
using again the SHA-1 algorithm and the relevant fields of the message that
were already parsed.

To conclude the receiver will compare both hashes and in case they are not
equal that will imply a corruption of the data before arrival.

41

Figure 3.10: Process of generating, sending and parsing a message

CoAP and SNMP security

In CoAP, security is already ensured using Datagram TLS (DTLS) [72] binding
or IPSec [34, 24]. Security in SNMP is out of the scope of this thesis, since
it is part of the MCN implementation, some relevant RFCs treat the subject
extensively [36, 62, 90, 13, 35], and many more.

CoAP-IP mapping Security

CoAP-IP mapping security is achieved by storing single values in the overlay.
Since stored objects in our overlay must be signed by the creating peer, security
is already provided by the overlay itself. For object level security in order
to protect stored data from tampering, by other nodes, each stored value is

42

digitally signed by the node which created it. When a value is retrieved, the
digital signature can be verified to detect tampering.

Bookkeeping Security

Introducing another overlay layer just for bookkeeping purposes permits the
MCN to retrieve overlay data with just one get operation. Security is achieved
by protecting the entries that conform a Node Information List.

When a Node wants to update or do an initial store of its node information,
it will do a store("node list", node_n_information). As shown in image 3.11
the receiving node will belong to that extra overlay we have designed, it will
receive a message encrypted with the public key of the MCN and signed with
the public key of that particular node and some fields of the payload.

Figure 3.11: Structure of the Node Information List, storing each node’s in-
formation in one resource.

With this model we guarantee confidentiality since only the MCN can read the
encrypted payload. By using digital signatures the peer responsible for storing
the data can verify the authenticity of the message and that this store operation
is valid. In addition, it provides integrity of the data since the signature is
saved along with values of the payload so that the MCN can verify the data.

Availability is increased since the DHT algorithm provides a replication mech-
anism for the information. Chord, in particular, stores replicas in the predeces-
sor and the successor of the node. Replication also increases persistence, if the

43

responsible peer crashes or if the storing peer leaves the overlay. Replication
also guards against Denial Of Service (DoS) attacks.

To improve load balancing, since there are many queries for a resource as
popular as Node Information List, we propose extra replication at other nodes
in the finger table.

3.4.7 Benefits of the Architecture

This architecture has certain advantages. First of all it allows to federate
geographically distributed WSN islands. CoAP provides a common namespace
for resources in all interconnected WSNs. A sensor in one WSN can access
the resources in another WSN since the WSNs are interconnected by the DHT
overlay.

The architecture enables decentralized wide-area sensor and actuator archi-
tectures. The DHT and the M2MCE provide lookup, storage, bookkeeping
and message routing. The overlay maps CoAP URIs to contact information of
sensors. Since the DHT is used, it acts as a Distributed Domain Name Service
(DDNS), translating CoAP names to addresses. All this without the need to
rely on central servers like resource directories or DNS-based service discovery
(DNS-SD) [17] that is used by CoAP usages like the one specified in [22] or in
home automation [50].

Moreover, this architecture integrates WSNs to the web. Web applications
can access the resources in the WSNs federated by the M2MCE using CoAP
thanks to the Proxy Nodes. This architecture also enables CoAP clients to
access resources on web servers if necessary. In general this bidirectional inte-
gration enables new applications such as the Web of Things [47, 85, 39]. The
architecture also makes resources in Zigbee based WSNs accessible through
CoAP and the Proxy Node. In the long term, technologies like 6LoWPAN will
be used instead.

Since the architecture proposes the use of structured P2P technologies, it
becomes self-configuring, scalable, robust, and cost-efficient. Scalability is
achieved since the addition of a PN or WN, will add resources to the systems.
If a high number of devices are added, this should not require investment in
new capacity. If we take a traditional client/server system, each node in the
network consumes additional resources on the central servers and that leads
to the need to add more capacity over time.

The architecture is robust since it does not depend on centralized elements
for rendezvous and for relying data. Cost efficiency is achieved since the sys-
tem has low capital expenditures because there are no central servers or data

44

centers and, more importantly, low operating expenditures since nodes require
low maintenance.

3.5 Use Cases

At this point in time M2M technologies are still blossoming, therefore it is diffi-
cult to predict the most useful applications and uses cases. This thesis focuses
on dispersed and mobile M2M networks in which cellular solutions fit well. On
the other hand fixed and concentrated ones, such as home automation, do not
require a priori cellular connectivity.

3.5.1 Dynamic Traffic Signaling

This use case derives from the necessity to solve some some traffic problems. In
certain weather conditions (i.e ice, snow, low visibility...) it might be necessary
to change the information of the traffic signs at the side of roads that provide
information to road users. It mighto be required to give extra information
of the set of conditions of the road, or warn about incidents. Traffic volume,
which increases and decreases at different times of the day, will also be a factor.

Although not widespread, the technology to provide Variable Speed Limits
(VSL) already exists [76] and it has been introduced in Britain, Germany where
accidents due to fog were reduced by 80% [76], Austria and Sweden where it
is expected to reduce the overall number of fatal crashes by 50% [56]. This
technology automatizes speed limit checking, applying truck regulation and
warning about dangerous weather and traffic conditions by using changeable
traffic signs. The control and monitoring of these signs is done manually at a
traffic control center, but human intervention implies lower response in case
of immediate risk and higher costs associated with the deployment of this
technology.

Again, applying a distributed network of sensors seems a good approach for
this problem. As an example, if the road becomes icy, when a sensor detects
the change in the conditions of the road it will inform the gateway of this
change. In turn, the gateway will reduce the speed limit displayed on the sign
and show a message warning of that change. It will also propagate it to the
neighboring nodes informing them of this change, thus the other nodes will also
adapt their signals reducing as well the speed limit or operating accordingly to
the new conditions. An example in figure 3.12 shows a sensor (1) that detects
ice on the road and alerts the gateway (2) that modifies the speed limit. The
gateway in turn alerts the other two nodes of the DHT (3) and (4) that also

45

Figure 3.12: Dynamic traffic monitoring use case.

modify the speed limit. Traffic in the parallel road (5) is no modified since
there is no need for it.

3.5.2 Water System Automation

Most modern cities have a water system that takes care of the process of taking
raw (untreated) water, purify it, pressurize it and distribute it through a pipe
network to the consumers and usage points. It also takes care of connecting
waste water to the sewer system.

According to ABB [8], worldwide there are two types of countries when it
comes to water management. Those with a relatively low water loss (below
15%) like Finland, Switzerland or New Zealand and those with high water loss
(more than 40%) like India, Turkey or Bulgaria that represent the majority
of countries. Most of that water loss does not arise from bursts in the main
pipes, which have high flow rates, but rather on the service pipes due to lack
of detection and timely reaction.

Considering again the set of hydrological and hydraulic components that con-
stitute the water supply we are going to focus on the pipe network. These pipes
usually copy the traditional city block grid pattern [66]. This structure is very
useful to distribute water efficiently and also provides loops used to re-route
the water in case of leakage or lack of pressure in some part of the network.
When a leak occurs the responsible valve needs to be manually closed. Even if

46

state of the art technologies involving magnetic sensors that detect differences
in water pressure or electronically activated valves that can close a pipe in
case of a leak are used, they still rely on a centralized (and expensive) control
center.

Applying a distributed network of sensors seems an excellent solution for this
problem. For instance, if a leak happens in one pipe of the network, when a
sensor detects the difference in pressure in the pipe it can alert the gateway of
this change which in turn would activate the responsible valve to close the pipe.
Then the gateway would share this alert with other nodes of the network in
order to efficiently and automatically reroute water to that location if possible
and to equilibrate the pressure.

Figure 3.13: Water system automation use case.

Another feature would be the use of chemical sensors that continuously test
the water for poisons and other chemical components that would be nocive
for the population. Upon detection, the gateways could immediately close the
water supply without the need of human intervention that would cause a fatal
delay and communicate with the other nodes of the network to reroute clean
water if possible. In figure 3.13 we see an example in which a sensor (1) detects
a leak in a service pipe and alerts the gateway (2). The gateway in turn closes
the access valve of the damaged pipe (3), alerts node (4) to reroute the water
flow to the destination and node (5) to increase the water pressure of the main

47

pipe to compensate for the previous leak.

48

Chapter 4

Implementation

For this thesis, we have implemented a prototype of a wide area node and the
M2MCE layer. The major functionality consists on the bookkeeping mecha-
nism, an interface towards other layers and the MCN and the use of the DHT
overlay for DNS functionality translating from CoAP to IP address. We in-
troduce what hardware and software has been used and some examples that
have been implemented.

4.1 Hardware and Software

This section with deal with the hardware used for our experiments: the LN,
the WN and the PN.

4.1.1 Local Node (LN)

From all the sensors that were evaluated none had IPv6 nor 6LoWPAN at the
moment this thesis was written. Some of the LN alternatives can be seen in
the following table:

Name Microcontroller RAM and Flash OS and other
Iris Mote ATmega 1281 8K and 128K TinyOS
Mica Mote ATmega 103 128K and 512K TinyOS
Mica Mote ATmega 103 128K and 512K TinyOS
Mulle Renesas M16C 31K and 384K Contiki and TinyOS
IMote 2.0 ARM 11-400 32 MB and 32 MB Linux and TinyOS
Waspmote ATmega 1281 8K and 128K Different modules

49

The Libelium1 Waspmote2 was chosen over the other two main competitors,
Mulle 3 and Irismote 4, since it provided all components (see Figure 4.1) in a
development kit, therefore implementation was more straightforward than in
the other cases.

The Waspmote includes a Zigbee transceiver, a Digi45 XBeeTM ZB5. It also
had different sensor boards for different applications such as: gases, transport,
smart cities, agriculture and event management.

For our case we only used the default Waspmote with no sensor board at-
tached, the only sensors on it where the temperature and the accelerometer.
Its characteristics are a low-power Atmel3 8-bit RISC-based microcontroller
with a frequency of 8MHz, the RAM memory is of 8KB and the flash memory
is 128KB. It also has 4KB of EEPROM and other communication modules
such as Bluetooth and GPRS. Its consumption is of 9mA when connected,
62uA on sleep mode and as low as 0,7uA in hibernation.

Figure 4.1: A Libelium Waspmote

Libelium Waspmote’s Atmel 6 board uses the open-source electronics proto-
typing platform called Arduino7. Arduino IDE provides a cross-platform ap-
plication development environment that allows compiling and uploading pro-
grams to the board directly. Libelium also provides APIs to access different

1http://www.libelium.com
2http://www.libelium.com/products/waspmote
3http://www.csee.ltu.se/ jench/mulle.html
4http://www.xbow.com
5http://www.digi.com
6http://www.atmel.com
7http://www.arduino.cc/

50

components to handle the sensors on the board [82, 83] and examples 8.

4.1.2 Wide-Area Node (WN) and Proxy Node (PN)

TheWide-Area Node, has been built on a Gumstix Overo R© EarthTM 9 computer-
on module10. The module has a ARM CortexTM A8 CPU11, the processor is
a Texas Instruments12 OMAP 350313 Applications Processor running at 600
MHz. Another of its main properties is its small size, the dimensions are
17mm x 58mm x 4.2mm and it only weights 4.3 grams. All this provides a
really small computer powerfull enough to run a Linux system. The Linux
distribution is in a 4GB micro SD card that contains the kernel image and
the root filesystem. There is a community built around the development on
Gumstix14.

We use a custom distribution based on the pre-built images provided by Gum-
stix15. We chose the Linux Angstrom Distribution 2.6.34 release 2010.7-test-
2010102016. We use opkg17 package managment tool to fetch meta-packages.
All the implementation is done in Java therefore we needed a Virtual Machine
to run the applications, the two options were JamVM18 and CacaoVM19 the
later was already included in the opkg repository.

As shown in figure 4.2.(1) Overo Earth is powered via an expansion board
connected to dual 70-pin AVX connectors. For our tests we had two different
boards: Pinto-THTM 4.2.(2) and TobiTM 4.2.(3).

The Tobi expansion board20 provides 0/100baseT Ethernet (I), SB Host (II),
DVI-D signals on an HDMI connector (III) and also features audio stereo in
and out (IV), USB OTG (V), +5V power port (VI) and USB client (VII). To
connect to the Overo Earth we connected a mini-B to standard A USB cable
from USB console port to a USB port on our test laptop and then opened a
kermit21 console session.

8http://www.libelium.com/development/waspmote#examples
9http://www.gumstix.com/store/product_info.php?products_id=211

10http://www.gumstix.com
11http://www.arm.com/products/processors/cortex-a/cortex-a8.php
12http://www.ti.com/
13http://focus.ti.com/docs/prod/folders/print/omap3503.html
14http://www.gumstix.org
15http://cumulus.gumstix.org/images/angstrom/factory/
16http://cumulus.gumstix.org/images/angstrom/misc/daily/
17http://wiki.openmoko.org/wiki/Opkg
18http://jamvm.sourceforge.net
19http://www.cacaovm.org
20http://www.gumstix.com/store/product_info.php?products_id=230
21http://www.columbia.edu/kermit

51

Figure 4.2: Overo Earth COM, Pinto-TH and Tobi extension boards

The Pinto-TH expansion board22 features a USB mini-AB port with OTG
signals (not a console port) and 5V power pins. As shown in the figure 4.3,
this board is the one we used for our final prototype, since it is much smaller
and lighter. Its dimensions are tiny, 76.2mm x 23mm and only weights 6.6
grams. It is powered by a 6Ah Polymer Lithium Ion Battery and charged with
a Polymer Lithium Ion battery charger23 that permits powering the board
while charging the batteries.

Although the Tobi board provided Ethernet connectivity we used a BandluxeTM

C170 3G USB Modem24 for data communication, it connected to the board
with a USB Hub. Since there is no console port in the Pinto-TH, we connected
to it with ssh, for that we implemented a script that provided the IP address
of the board.

22http://www.gumstix.com/store/product_info.php?products_id=239
23https://www.sparkfun.com/products/726
24http://www.bandrich.com/Data-Card_C170.html

52

Figure 4.3: A Proxy Node with 3G USB Modem (1), XBee ZB transceiver
[2], Pinto-TH board with Overo Earth module (3), LiPoly Charger (4) and
batteries (5)

The Proxy Node had the same hardware as the Wide-Area Node with the
exception that it included a transceiver to communicate with the WPAN. Our
transceiver was a Waspmote Gateway included in the Libelium Developers
Kit. This XBee ZB transceiver is mounted on a USB dongle.

For node management we used a Java version of SNMP, SNMP4J25. For CoAP
we used the CoAP implementation JCoAP26since it is the most active imple-
mentation at the moment and supports the basic setups we aim at in our
prototype implementation.

Cryptographic operations were implemented using BouncyCastle’s 27 lightweight
cryptographic Application Programming Interface (API). Peers in the overlay
used self-signed X.509 certificates. RSA is used as the public key algorithm.
The RSA key length is 1024 bits. Secure Hash Algorithm (SHA-1) with RSA
encryption is used as the signature algorithm. Bookkeeping Security was not
implemented.

Messages in our overlay are exchanged over UDP. Use of a secure transport
protocol such as Transport Layer Security (TLS) or Datagram Transport Layer
Security (DTLS) was not possible due to the following reasons. First, our Java

25http://www.snmp4j.org/
26https://github.com/dapaulid/JCoAP
27http://www.bouncycastle.org/

53

does not include a DTLS implementation. Second, although we could have
used a client-side TLS implementation, our nodes are too constrained to act
as TLS servers. This prevented the use of TLS since a node participating in a
DHT overlay needs to act as both a TLS client and server.

4.2 Prototype Architecture

Our prototype was implemented following the design laid in chapter 3. The
architectures of the WN and PN prototype are similar, we will focus in the PN
since it is more elaborated and has more elements. The WN can be understood
as a subset of the PN with a different Application Logic.

As shown in Figure 4.4 there were three main parts in the architecture: Man-
agement Module, the M2MCE and the Proxy itself. The three parts were
implemented separately in Java. To integrate them we used Java’s Remote
Method Invocation (Java RMI) that performs the object-oriented equivalent
of remote procedure calls (RPC) for Inter Process Communication (IPC).

Figure 4.4: Prototype Scenario

When the WN starts up, it loads a configuration file with certain M2MCE
parameters specific for that particular node, such as: Java RMI information,
interface, IP and port of the bootstrap peer, CoAP name, Chord configuration
delays, number of successors, predecessors, fingers and so on. In the case
of the PN, the configuration file also contains information about the XBee

54

coordinator and the proxy itself, such as baudrate for serial communication
and XBee port to be used.

Figure 4.5: Wide Area Node as implemented in our scenario

The application logic in the WN (See figure 4.5) will call the M2MCE to join
the Overlay by contacting the Bootstrap Peer. Once it is part of the Overlay it
will store the bookkeeping and addressing information in it. The CoAP name
specified in the configuration file will be used for addressing the node. At
this point the WN will also store the information of the sensors or actuators
attached to itself. In the case of the PN it will announce WPAN nodes to the
overlay. Each node instance will also launch a CoAP server listening on port
5683 for requests from other WNs or PNs.

Once the node is in the overlay, it can be addressed by using the CoAP Name
Registration Service and querying for the coap name of the node. The CoAP
name will be the host field of the CoAP uri. For instance, "coap:" "//" host
[":" port] path-abempty ["?" query]. That overlay query will return the IP
address of the Gumstix device.

If the Gumstix PN has some Libelium Waspmotes connected, it can offer re-
source discovery by starting a CoAP session and sending to it the GET message
"coap://example.net/.well-known/core" as defined in [65]. That query will re-
turn the set of Waspmotes, their availability and the sensor information they
offer.

Another possibility is to send a CoAP message Request to an actuator, either
in the WN, PN or LN indicating that a "Button pressed". Upon receiving

55

this message the Actuator will perform a predefined action, in our case it is a
blinking LED.

Towards the MCN, the Bookkeeping mechanism will show in the terminal the
list of nodes available in the overlay in the moment of the query. So far the
information is very simple, if we lookup for "list_nodes" it will return the
node name, IP, joining time, leaving time, number of sensors and whether it
is a database node. In the case of the sensor it will return the name, the type,
join and leave timestamps and latest stored value. A sample result would be:

Gumstix1 | 192.168.0.1 | 1311608824 | 0 | 3 | F
Waspmote1 | temperature | 131167613 | 0 | 35
Waspmote2 | humidity | 1311608121 | 1311923675 | 15
Waspmote3 | temperature | 1311608222 | 0 | 35

Gumstix2 | 192.168.0.2 | 1311609071 | 0 | 2 | T
Waspmote4 | pressure | 1311608222 | 0 | 1002
Waspmote5 | temperature | 1311608222 | 0 | 22

Gumstix3 | 192.168.0.3 | 1311609091 | 1311609394 | 0 | F
Gumstix4 | 192.168.0.4 | 1311609071 | 0 | 0 | T

56

Chapter 5

Conclusions and Future Work

"The machine does not isolate man from the great problems of na-
ture but plunges him more deeply into them."

Antoine de Saint-Exupery

This work was a part of the Devices and Interoperability EcosysteM (DIEM)
program 1, sponsored by the Finnish Funding Agency for Technology and
Innovation (TEKES) 2 and done in collaboration with the ICT Future Internet
SHOK program 3

The project is a joint work to study how to move the intelligence of an M2M
system from a centralized server to the network edge. Our solution consists on
a DHT based M2M System. The project was divided in three different thesis
topics that related to the different devices in the network: one focuses on the
Proxy Node and Sensor Network; another on the Monitoring and Controlling
Node and system management; and finally this thesis focuses on the Wide-
Area Nodes and the DHT to allow the Distributed Intelligence.

This chapter summarizes the main achievements in this thesis. We present the
main conclusions and suggest some directions for future work.

5.1 Conclusions

In this thesis we propose a new architecture for wide area sensor and actuator
networking. The architecture binds together WSN and P2P protocols to pro-

1http://www.diem.fi/programme
2http://www.tekes.fi/en/
3www.futureinternet.fi

57

vide a set of distributed WSNs. For this we have designed and implemented
the set of nodes that will be responsible for such communication, as well as
studied different use cases for them. Advantages of this architecture are de-
centralization (except for joining procedure), scalability, self-organization and
robustness.

The work progressed in several steps, starting with studying the state of the art
in machine to machine communications, sensor and peer-to-peer technologies.
An important decision was to focus on the different protocols for our prototype,
namely Chord, CoAP and Zigbee.

Since sensor networks tend to be application specific, a set of scenarios was
envisaged for our prototype. Development and implementation of the differ-
ent parts of the network was done following this use cases while at the same
time, trying to make the design as versatile as possible. This was success-
fully achieved by relying on the application layer to provide most of the final
functionality while leaving network, link and physical layers generic.

Each of the nodes we have designed was necessary. A PN was key since current
sensor nodes (LNs) are too constrained to run our DHT and do not implement
an IP stack. Moreover, a PN provides additional caching and security in
the network. In prevision for future improvement of sensor capabilities, thus
becoming less constrained, the WN was implemented, adding the possibility
of attaching sensors and actuators to it. A MCN was required in order to
monitor and access the resources in the WSN federated by the DHT and to
create associations between nodes.

CoAP was chosen to provide a common namespace for resources in the net-
work. SNMP was chosen to access resources in the network and to provide
MCN functionality.

Different caching mechanisms have been proposed. First at the PN level, to
reduce the number of queries to the LNs, then at the DHT level for load bal-
ancing and persistence. Caching at the DHT also improves system reliability
and prevents a single node from over-quering. Security has also been addressed
both in the WN and the M2MCE design. Moreover, a bookkeeping mecha-
nism has been proposed to improve system reliability and enable functionality
provided by the MCN.

Based on such design the nodes have been implemented using Gumstix and
Waspmote sensor devices as hardware. Different Open Source solutions have
been used and others have been implemented. We have successfully tested our
implementation in different scenarios and confirmed its basic functionality.

58

5.2 Future Work

We have written a paper that we expect to publish in the following months. In
"Using RELOAD and CoAP for Wide Area Sensor and Actuator Networks"
[58], we evaluate the performance of our scheme. In terms of amount of traffic
and volume of inter-device communication (i.e. number of CoAP observation
relationships and frequency of CoAP notifications) a client/server performs
better than the P2P approach. In this paper we show that the general advan-
tages of P2P (scalability, robustness and so on) become visible as the number
of observation relationships grow. Thus P2P is recommended in large scale
deployments rather than small ones where a client/server approach is more
efficient. In this paper we also propose a CoAP usage for RELOAD similar to
the one used in our design.

One of the goals of this project is to make devices as product-like as possible.
For that we have started testing under real conditions and we have started
designing cases for the different devices. Not only the casing but the devices
themselves are also a matter of improvement. So far we have reduced their
dimensions to some centimeters, but we believe that in the near future we
might find even smaller wireless sensors in the market. Their cost is currently
relatively high, we expect that it will decrease when these smart devices are
manufactured and deployed in large numbers. If we want this technology to
spread out and become really ubiquitous those two factors, size and cost, are
paramount.

We believe that the future for smart objects in terms of interoperability and
standardization is IP. Our implementation lacks transparency towards the
WSN and relies on the PN for most of the tasks. The future lies not in
Zigbee but in using IP in the sensor devices directly.

Challenges in our model are centered in following current standards and mak-
ing our devices as interoperable as possible. To do so, we will try to build
sensor devices based on 6LoWPAN, IPv6 and CoAP. These standards, we be-
lieve, are the key to success to the Internet of Things, as the technology is
produced by many different parties.

59

Bibliography

[1] P2PSIP IETF Working Group, http://datatracker.ietf.org/wg/
p2psip/charter, Referenced on 22.05.2011.

[2] A scalable content-addressable network, vol. 31, New York, NY, USA,
ACM, August 2001.

[3] Building Peer-to-Peer Systems with Chord, a Distributed Lookup Service,
2001.

[4] 802.11 2003, IEEE Standard for Information technology. Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications, 2003.

[5] 802.15.4 2003, IEEE Standard for Information technology. Part 15.4:
Wireless Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications for Low Rate Wireless Personal Area Networks (LR-WPANs),
October 2003.

[6] 802.15.1 2005, IEEE Standard for Information technology. Part 15.1:
Wireless Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications for Wireless Personal Area Networks (WPANs), 2005.

[7] 802.15.4 2006, IEEE Standard for Information technology. Part 15.4:
Wireless Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications for Low Rate Wireless Personal Area Networks (WPANs), 2006.

[8] ABB, Solutions for the water cycle Leakage management Water Leakage,
2009.

[9] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless
sensor networks: a survey, Computer networks 38 (2002), no. 4, 393–422.

[10] Cesare Alippi, Romolo Camplani, Cristian Galperti, and Manuel Roveri,
A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Envi-
ronmental Monitoring, IEEE Sensors Journal 11 (2011), no. 1, 45–55.

60

http://datatracker.ietf.org/wg/p2psip/charter
http://datatracker.ietf.org/wg/p2psip/charter

[11] Luigi Atzori, Antonio Iera, and Giacomo Morabito, The Internet of
Things: A survey, Computer Networks 54 (2010), 2787–2805.

[12] S. Baset and H. Schulzrinne, Peer-to-peer protocol (p2pp), March 2007,
Work in progress.

[13] U. Blumenthal and B. Wijnen, User-based Security Model (USM) for ver-
sion 3 of the Simple Network Management Protocol (SNMPv3), RFC 3414
(Standard), December 2002, Updated by RFC 5590.

[14] D. Bryan, P.Matthews, E. Shim, D. Willis, and S. Dawkins, Concepts
and terminology for peer to peer sip, http://tools.ietf.org/html/
draft-ietf-p2psip-concepts-03, October 2010, Work in progress.

[15] David A. Bryan, Bruce B. Lowekamp, and Cullen Jennings, Sosimple: A
serverless, standards-based, p2p sip communication system, Advanced Ar-
chitectures and Algorithms for Internet Delivery and Applications, 2005.
AAA-IDEA 2005. First International Workshop on (2005).

[16] J.D. Case, M. Fedor, M.L. Schoffstall, and J. Davin, Simple Network
Management Protocol (SNMP), RFC 1157 (Historic), May 1990.

[17] S. Cheshire and M. Krochmal, DNS-Based Service Discovery, Internet-
Draft draft-cheshire-dnsext-dns-sd-10, Internet Engineering Task Force,
February 2011, Work in progress.

[18] W. Colitti, K. Steenhaut, and N. De Caro, Integrating wireless sensor
networks with the web, (2011).

[19] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
Internet X.509 Public Key Infrastructure Certificate and Certificate Re-
vocation List (CRL) Profile, RFC 5280 (Proposed Standard), May 2008.

[20] E. Cooper, A. Johnston, and P. Matthews, A distributed transport func-
tion in p2psip using hip for multi-hop overlay routing, June 2007, Work
in progress.

[21] W.C. Craig, Zigbee:âĂĲwireless control that simply worksâĂİ, Zig-
Bee Alliance http://www. zigbee. org/resources/documents/2004_Zig
Bee_CDC-P810_Craig_Paper. pdf (2004).

[22] P. Van der Stok and K. Lynn, CoAP Utilization for Building Control,
Internet-Draft draft-vanderstok-core-bc-04, Internet Engineering Task
Force, July 2011, Work in progress.

61

http://tools.ietf.org/html/draft-ietf-p2psip-concepts-03
http://tools.ietf.org/html/draft-ietf-p2psip-concepts-03

[23] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, RFC 5246 (Proposed Standard), August 2008, Updated by
RFCs 5746, 5878, 6176.

[24] D. Eastlake 3rd, Cryptographic Algorithm Implementation Requirements
for Encapsulating Security Payload (ESP) and Authentication Header
(AH), RFC 4305 (Proposed Standard), December 2005, Obsoleted by
RFC 4835.

[25] D. Eastlake 3rd and P. Jones, US Secure Hash Algorithm 1 (SHA1), RFC
3174 (Informational), September 2001, Updated by RFCs 4634, 6234.

[26] L. Eggert, Congestion Control for the Constrained Application Protocol
(CoAP), Internet-Draft draft-eggert-core-congestion-control-01, Internet
Engineering Task Force, January 2011, Work in progress.

[27] Bob Emmerson, M2M : the Internet of 50 billion devices, 2005.

[28] S.C. Ergen, ZigBee/IEEE 802.15. 4 Summary, 2004.

[29] Ericsson, More than 50 billion connected devices, taking connected devices
to mass market and profitability, http://www.ericsson.com/res/docs/
whitepapers/wp-50-billions.pdf. Accessed April 29, 2011.

[30] Information Society European Commission and Networked Enterprise &
RFID Unit (D4) Media, Internet of things: an early reality of the future
internet, May 2009.

[31] Zhang Fan, Li Wenfeng, Jens Eliasson, Laurynas Riliskis, and H. Mak-
itaavola, TinyMulle: A Low-Power Platform for Demanding WSN Ap-
plications, Wireless Communications Networking and Mobile Computing
(WiCOM), 2010 6th International Conference on, IEEE, 2010, pp. 1–5.

[32] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1, RFC 2616
(Draft Standard), June 1999, Updated by RFCs 2817, 5785, 6266.

[33] R.T. Fielding, Architectural styles and the design of network-based soft-
ware architectures, Ph.D. thesis, Citeseer, 2000.

[34] S. Frankel and S. Krishnan, IP Security (IPsec) and Internet Key Ex-
change (IKE) Document Roadmap, RFC 6071 (Informational), February
2011.

62

http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf
http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf

[35] J. Galvin and K. McCloghrie, Security Protocols for version 2 of the Sim-
ple Network Management Protocol (SNMPv2), RFC 1446 (Historic), April
1993.

[36] J. Galvin, K. McCloghrie, and J. Davin, SNMP Security Protocols, RFC
1352 (Historic), July 1992.

[37] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu, What can
databases do for peer-to-peer, WebDB Workshop on Databases and the
Web, Citeseer, 2001.

[38] Saikat Guha, Neil Daswani, and Ravi Jain, An Experimental Study of
the Skype Peer-to-Peer VoIP System, IPTPS’06: The 5th International
Workshop on Peer-to-Peer Systems, Microsoft Research.

[39] D. Guinard and V. Trifa, Towards the web of things: Web mashups
for embedded devices, Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web (MEM 2009), in proceedings of
WWW (International World Wide Web Conferences), Madrid, Spain,
Citeseer, 2009.

[40] K. Hartke and Z. Shelby, Observing Resources in CoAP, Internet-Draft
draft-ietf-core-observe-02, Internet Engineering Task Force, March 2011,
Work in progress.

[41] INFSO D.4 Networked Enterprise & RFID INFSO G.2 Micro & Nanosys-
tems in cooperation with the Working Group RFID of the ETP EPOSS,
Internet of things in 2020, roadmap for the future, May 2008.

[42] C. Jennings, B. Lowekamp, E. EricRescorla, S. Baset, and H. Schulzrinne,
A SIP Usage for RELOAD, Internet-Draft draft-ietf-p2psip-sip-06, Inter-
net Engineering Task Force, July 2011, Work in progress.

[43] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, Re-
source location and discovery (reload) base protocol, http://tools.ietf.
org/html/draft-ietf-p2psip-base-17, July 2011, Work in progress.

[44] C. Jennings, J. Rosenberg, and E. Rescorla, Address settlement by peer
to peer, July 2007, Work in progress.

[45] XingFeng. Jiang, HeWen. Zheng, C. Macian, and V. Pascual, Service
extensible p2p peer protocol, February 2008, Work in progress.

[46] J. Jonsson and B. Kaliski, Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1, RFC 3447 (Informa-
tional), February 2003.

63

http://tools.ietf.org/html/draft-ietf-p2psip-base-17
http://tools.ietf.org/html/draft-ietf-p2psip-base-17

[47] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty,
G. Gopal, M. Frid, V. Krishnan, H. Morris, et al., People, places, things:
Web presence for the real world, Mobile Networks and Applications 7
(2002), no. 5, 365–376.

[48] A. Knauf, G. Hege, T. Schmidt, and M. Waehlisch, A Usage for Shared
Resources in RELOAD (ShaRe), Internet-Draft draft-knauf-p2psip-share-
01, Internet Engineering Task Force, July 2011, Work in progress.

[49] G Kortuem, F Kawsar, V Sundramoorthy, and Fitton, Smart objects
as building blocks for the internet of things., IEEE Internet Computing
(2010).

[50] Matthias Kovatsch, Markus Weiss, and Dominique Guinard, Embedding
internet technology for home automation, Proceedings of the 15th IEEE
International Conference on Emerging Technologies and Factory Automa-
tion (ETFA 2010) (Bilbao, Spain), September 2010.

[51] B. Krishnamachari and C.S. Raghavendra, Performance evaluation of
the IEEE 802.15.4 MAC for low-rate low-power wireless networks, IEEE
International Conference on Performance, Computing, and Communica-
tions, 2004 (2004), 701–706.

[52] A.D. Kshemkalyani and M. Singhal, Distributed computing: principles,
algorithms, and systems, Cambridge Univ Pr, 2008.

[53] N. Kushalnagar, G. Montenegro, and C. Schumacher, IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals, RFC 4919 (Informational),
August 2007.

[54] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, F. Jahanian,
and M. Karir, Atlas internet observatory 2009 annual report, Arbor Net-
works, the University of Michigan and Merit Network, Tech. Rep (2009).

[55] D. Levi, P. Meyer, and B. Stewart, Simple Network Management Protocol
(SNMP) Applications, RFC 3413 (Standard), December 2002.

[56] Gunnar Lind, Variable speed limits at intersections in Sweden, European
Commission, Directorate General Energy and Transport (2007), 0–12.

[57] J. Maaenpa and J.J. Bolonio, Performance of resource location and discov-
ery (reload) on mobile phones, Wireless Communications and Networking
Conference (WCNC), 2010 IEEE, april 2010, pp. 1 –6.

64

[58] J. Maaenpa, J.J. Bolonio, and S. Loreto, Using reload and coap for wide
area sensor and actuator networking, 2011, (Accepted for publication).

[59] J. Maenpaa and G. Camarillo, A study on maintenance operations in a
chordbased peer-to-peer session initiation protocol overlay network, May
2009.

[60] J. Maenpaa, G. Camarillo, and J. Hautakorpi, A self-tuning distributed
hash table (dht) for resource location and discovery (reload), February
2009, Work in progress.

[61] E. Marocco and E. Ivov, Extensible peer protocol (xpp), June 2007, Work
in progress.

[62] K. McCloghrie, An Administrative Infrastructure for SNMPv2, RFC 1909
(Historic), February 1996.

[63] Steve Meloan, Toward a global internet of things, http://java.sun.com/
developer/technicalArticles/Ecommerce/rfid/. Accessed April 29,
2011.

[64] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, Transmission of
IPv6 Packets over IEEE 802.15.4 Networks, RFC 4944 (Proposed Stan-
dard), September 2007.

[65] M. Nottingham and E. Hammer-Lahav, Defining Well-Known Uniform
Resource Identifiers (URIs), RFC 5785 (Proposed Standard), April 2010.

[66] City of Sequim, Water system map, http://www.ci.sequim.wa.
us/planning/Maps/Water%20System%20Map.pdf. Accessed February 5,
2011.

[67] ZigBee Standards Organization, Zigbee specification, January 2008.

[68] Y. Peng, W. Wang, Z. Hao, and Y. Meng, An SNMP Usage for
RELOAD, Internet-Draft draft-peng-p2psip-snmp-02, Internet Engineer-
ing Task Force, July 2011, Work in progress.

[69] Y. Peng, W. Wang, J. JinPeng, L. Le, Z. Hao, and Y. Meng, Network
Management Scenarios for RELOAD, Internet-Draft draft-peng-p2psip-
network-management-scenarios-02, Internet Engineering Task Force,
March 2011, Work in progress.

[70] M. Petit-Huguenin, Configuration of Access Control Policy in REsource
LOcation AndDiscovery (RELOAD) Base Protocol, Internet-Draft draft-
petithuguenin-p2psip-access-control-03, Internet Engineering Task Force,
July 2011, Work in progress.

65

http://java.sun.com/developer/technicalArticles/Ecommerce/rfid/
http://java.sun.com/developer/technicalArticles/Ecommerce/rfid/
http://www.ci.sequim.wa.us/planning/Maps/Water%20System%20Map.pdf
http://www.ci.sequim.wa.us/planning/Maps/Water%20System%20Map.pdf

[71] Jan S. Rellermeyer, Michael Duller, Ken Gilmer, Damianos Maragkos,
Dimitrios Papageorgiou, and Gustavo Alonso, The software fabric for
the internet of things., IOT (Christian Floerkemeier, Marc Langheinrich,
Elgar Fleisch, Friedemann Mattern, and Sanjay E. Sarma, eds.), Springer,
2008, pp. 87–104.

[72] E. Rescorla and N. Modadugu, Datagram Transport Layer Security, RFC
4347 (Proposed Standard), April 2006, Updated by RFC 5746.

[73] J. Rosenberg, Interactive connectivity establishment (ice): A protocol for
network address translator (nat) traversal for offer answer protocols, Oc-
tober 2007, Work in progress.

[74] J. Rosenberg, R. Mahy, and P. Matthews, Traversal using relays around
nat (turn): Relay extensions to session traversal utilities for nat (stun),
November 2008, Work in progress.

[75] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, SIP: Session Initiation Protocol,
RFC 3261 (Proposed Standard), June 2002, Updated by RFCs 3265, 3853,
4320, 4916, 5393, 5621, 5626, 5630, 5922, 5954, 6026, 6141.

[76] Peter Schick, Einfluss von Streckenbeeinflussungsanlagen auf die Kapazi-
tat von Autobahnabschnitten sowie die Stabilitat des Verkehrsflusses, Inst.
fur Strass en und Verkehrswesen, Univ. Stuttgart, 2003.

[77] Detlef Schoder, Kai Fischbach, and Christian Schmitt, Core concepts in
peer-to-peer networking, Peer-to-peer computing: the evolution of a dis-
ruptive technology 296 (2005), 1–27.

[78] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, Constrained Appli-
cation Protocol (CoAP), Internet-Draft draft-ietf-core-coap-07, Internet
Engineering Task Force, July 2011, Work in progress.

[79] Zach Shelby and Carsten Bormann, 6lowpan: The wireless embedded in-
ternet, Wiley Publishing, 2010.

[80] X. Shen and Z. Li, Implementing database management system in p2p
networks, 2008 International Seminar on Future Information Technology
and Management Engineering, IEEE, 2008, pp. 528–532.

[81] Sven Siorpaes, Gregor Broll, Massimo Paolucci, Enrico Rukzio, John
Hamard, Matthias Wagner, Albrecht Schmidt, and Docomo Eurolabs,
Mobile interaction with the internet of things, In Adjunct Proc. of Perva-
sive 2006 Late Breaking Results, 2006.

66

[82] Libelium Comunicaciones Distribuidas S.L., Waspmote
datasheet, http://www.libelium.com/documentation/waspmote/
waspmote-datasheet_eng.pdf. Accessed April 22, 2011.

[83] , Waspmote technical guide, http://www.libelium.com/
documentation/waspmote/waspmote-technical_guide_eng.pdf.
Accessed April 22, 2011.

[84] W. Stallings, Snmpv3: A security enhancement for snmp, Communica-
tions Surveys Tutorials, IEEE 1 (1998), no. 1, 2 –17.

[85] V. Stirbu, Towards a restful plug and play experience in the web of things,
Semantic computing, 2008 IEEE international conference on, IEEE, 2008,
pp. 512–517.

[86] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
Chord: A scalable peer-to-peer lookup service for internet applications,
ACM SIGCOMM Computer Communication Review 31 (2001), no. 4,
149–160.

[87] Daozong Sun, Sheng Jiang, Weixing Wang, and Jingchi Tang, WSN De-
sign and Implementation in a Tea Plantation for Drought Monitoring,
2010 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (2010), 156–159.

[88] G. Tolle, A UDP/IP Adaptation of the ZigBee Application Protocol, draft-
tolle-cap-00 (Informational), october 2008.

[89] Jean-Philippe Vasseur and Adam Dunkels, Interconnecting smart objects
with IP - the next Internet, Morgan Kaufmann, 2010.

[90] G. Waters, User-based Security Model for SNMPv2, RFC 1910 (Historic),
February 1996.

[91] Evan Welbourne, Leilani Battle, Garret Cole, Kayla Gould, Kyle Rector,
Samuel Raymer, Magdalena Balazinska, and Gaetano Borriello, Building
the internet of things using rfid, IEEE Internet Computing 13 (2009).

67

http://www.libelium.com/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-technical_guide_eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-technical_guide_eng.pdf

	Abbreviations and Acronyms
	List of Figures
	Introduction
	Overview
	Problem Statement
	Structure of the Thesis

	Background
	The Internet of Things
	Machine-to-Machine

	Current Sensor Technologies
	IEEE 802.15.4
	ZigBee1™
	6LoWPAN
	CoAP

	SNMP
	Peer-to-Peer (P2P)
	Unstructured P2P
	Structured P2P
	Distributed Hash Tables (DHT)
	RELOAD

	Design
	Motivation
	Design Principles
	Architecture
	Design Details
	CoAP communication
	Joining of PN and LN
	Leaving of PN and LN
	CoAP Name Registration Service
	Bookkeeping
	Security
	Benefits of the Architecture

	Use Cases
	Dynamic Traffic Signaling
	Water System Automation

	Implementation
	Hardware and Software
	Local Node (LN)
	Wide-Area Node (WN) and Proxy Node (PN)

	Prototype Architecture

	Conclusions and Future Work
	Conclusions
	Future Work

